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abstract

PURPOSE Clinical targeted sequencing panels are important for identifying actionable variants for patients with
cancer; however, existing approaches do not provide transparent and rationally designed clinical panels to
accommodate the rapidly growing knowledge within oncology.

MATERIALS AND METHODSWe used the Clinical Interpretations of Variants in Cancer (CIViC) database to develop
an Open-Sourced CIViC Annotation Pipeline (OpenCAP). OpenCAP provides methods to identify variants within
the CIViC database, build probes for variant capture, use probes on prospective samples, and link somatic
variants to CIViC clinical relevance statements. OpenCAP was tested using a single-molecule molecular in-
version probe (smMIP) capture design on 27 cancer samples from 5 tumor types. In total, 2,027 smMIPs were
designed to target 111 eligible CIViC variants (61.5 kb of genomic space).

RESULTS When compared with orthogonal sequencing, CIViC smMIP sequencing demonstrated a 95% sen-
sitivity for variant detection (n = 61 of 64 variants). Variant allele frequencies for variants identified on both
sequencing platforms were highly concordant (Pearson’s r = 0.885; n = 61 variants). Moreover, for individuals
with paired tumor and normal samples (n = 12), 182 clinically relevant variants missed by orthogonal se-
quencing were discovered by CIViC smMIP sequencing.

CONCLUSION The OpenCAP design paradigm demonstrates the utility of an open-source and open-access
database built on attendant community contributions with peer-reviewed interpretations. Use of a public re-
pository for variant identification, probe development, and variant interpretation provides a transparent approach
to build dynamic next-generation sequencing–based oncology panels.

JCO Clin Cancer Inform. © 2019 by American Society of Clinical Oncology

Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

Despite recognition that genomics plays an important
role in tumor prognosis, diagnosis, and treatment,
scaling genetic analysis for routine analysis of most
tumor specimens has been unattainable.1,2 Barriers
preventing widespread incorporation of genomic
analysis into treatment protocols include costs asso-
ciated with genomic sequencing and analysis,3

computational limitations preventing timely identifi-
cation of relevant variants,3 and rapidly evolving
knowledge of the clinical actionability of variants.4

Technologic improvements in sequencing and data
analysis continue to reduce these first 2 limitations;
however, less progress has been made in integrating
dynamic genomic annotation into clinical workflows.
More than 22% of oncologists have acknowledged

limited confidence in their own understanding of how
genomic knowledge applies to patients’ treatment, and
18% reported testing patients’ genetics infrequently.5

In the face of exponential growth in clinically relevant
genomic findings, driven by precision oncology efforts,
there will likely be increased inability for physicians to
command the most current information, resulting in
increasing delay between academic discovery and
clinical utility. This information gap has been de-
scribed as the interpretation bottleneck.4-6

Alleviating the interpretation bottleneck will require
codevelopment of targeted sequencing panels, bio-
informatic tools, and variant knowledgebases that
effectively elucidate and annotate clinically actionable
variants from sequencing data.7,8 These require-
ments each raise separate challenges. With regard
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to targeted panel development, commercial and academic
pancancer clinical gene capture panels have now be-
come commonplace, with at least 2 obtaining US Food and
Drug Administration approval (FoundationONE CDx9

[Foundation Medicine, Cambridge, MA] and Memorial
Sloan Kettering-Integrated Mutation Profiling of Actionable
Cancer Targets10 [Memorial Sloan Kettering Cancer Center,
New York, NY]). Even so, few panels indicate how genomic
loci are selected for panel inclusion (Data Supplement),
and none have proposed a sustainable or scalable
mechanism to allow for panel evolution over time in re-
sponse to knowledge advances in molecular oncology. With
regard to bioinformatic tool development, the OncoPaD11

portal provides one of the only methods to create rational
designed panels by linking clinically relevant variants to
genomic loci on the basis of a cohort of tumor samples;
however, this database is not directly linked to actively
updated clinical interpretations with detailed underlying
evidence. The final challenge of building knowledgebases
for variant interpretation perhaps poses even greater and
more persistent challenges. Commercial entities typically
rely on the manual curation and organization of research
findings into structured databases, which are expensive to
create and maintain, forcing companies to limit public
access or to charge for use. The resulting lack of trans-
parency creates inefficiencies in the field through un-
necessary replication of curation effort and suboptimal
communication with clinicians, ultimately hindering de-
velopment of effective patient treatment plans. Sepa-
rately, governmental and academic institutions have
developed variant interpretation resources, such as the
Catalogue of Somatic Mutations in Cancer,12 ClinVar,13 and
cBioPortal,14,15 that have drastically improved research ef-
forts and academic discovery; however, these resources do
not have well-supported (evidence-based) clinical relevance
summaries for cancer variants that can be easily accessed
and used by physicians. Several resources provide detailed
clinical interpretation of cancer variants (eg, OncoKB,16 JAX
Clinical Knowledgebase,17 and others), but these databases

are either limited by license restrictions or closed curation
models.

To address these limitations, we developed a method to
identify, capture, and annotate variants using the Clinical
Interpretation of Variants in Cancer (CIViC) database.18 The
CIViC database is a freely accessible (public domain
content), publicly curated, expert-moderated repository of
therapeutic, prognostic, predisposing, and diagnostic in-
formation in precision oncology.19 The database provides
a powerful platform for panel development and variant
annotation for the following reasons: each variant within
CIViC is described by clinical relevance summaries linked
to medical literature; the history of curation within CIViC is
stored and publicly available to all users; and CIViC has an
open-source, open-access applied programming interface
(API) for external query. Using the CIViC database and API,
we developed the Open-Sourced CIViC Annotation Pipeline
(OpenCAP) for creating custom capture panels, executing
capture panel sequencing on prospective samples, iden-
tifying variants from sequencing data, and annotating
variants for clinical relevance.20 An exemplary clinical
capture panel was created using OpenCAP to demonstrate
utility. Specifically, variants within the CIViC database were
identified based on clinical relevance, and single-molecule
molecular inversion probes (smMIPs) were designed to
target variants of interest. This panel was used on cancer
samples to evaluate design, and identified somatic variants
were compared with orthogonal sequencing. Variants
identified via smMIP capture were linked back to the CIViC
database for clinical annotation (Fig 1). Ultimately, this
method could be used to rapidly and efficiently link variants
to clinical relevance summaries, enabling the development
of custom capture panels for a variety of clinical and re-
search scenarios.

MATERIALS AND METHODS

Development of Operating Procedure for OpenCAP

OpenCAPwas built to guide users through the development
of a custom capture panel linked to CIViC clinical relevance

CONTEXT

Key Objective
Development of clinical genomics pipelines and associated analytical software is needed to meet the growing needs of

oncologists for cancer diagnosis and treatment.
Knowledge Generated
Here we describe methods for using the Clinical Interpretations of Variants in Cancer (CIViC) database to develop the Open-

Sourced CIViC Annotation Pipeline (OpenCAP). This resource first describes methods for variant capture and subsequently
provides tools for variant annotation. Using OpenCAP, we demonstrated applicability through development of a single-
molecule molecular inversion probe capture panel, which was validated against whole-exome sequencing.

Relevance
Maintenance and continuous improvement of the OpenCAP software will help to serve the needs of researchers and

physicians who are using precision oncology to guide treatment of their patients.
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summaries.20 OpenCAP consists of 5 sections, each with
examples and user tutorials. The first section describes
CIViC and directs users through the CIViC Web interface.
The next section describes methods for building a custom
capture panel, which includes identifying pertinent variants

within the CIViC database and targeting those variants with
probes using curated genomic coordinates. Subsequently,
OpenCAP gives a high-level overview of the massively
parallel sequencing pipeline, which includes brief sum-
maries for sample procurement, nucleic acid generation,

Platform comparison

ATCAGTTACGAATCCGCTATACCGCTAGCTAAAATGCG

Call variants Compare variants Compare VAFs

O
ri

g
in

al
 V

A
F 

smMIPs VAF 

Develop panel

CIViC smMIPs Panel

Select variants Categorize variants

MUTATION

Hotspot Target 

EXON EXON

Sparse Tiling

EXON EXON
probeprobe

probe

probe
probe

Full Tiling

probe

probe

probe

probe

backbone

molecular tag

mutation

readstrand

pooled
readstrands

true mutation

random error

CIViC Variant Evidence
Score indicates

sufficient curation 

Sequence ontology
ID indicates

DNA-based variant

smMIP sequencing

Validation samples

Select samples Original sequencing

Genome or
exome
sequencing

chr5:112,838,693
Total count : 6
A : 1 (20%, 1+, 0-)
C : 0
G : 0
T : 5 (80%, 3+, 2-)
N : 0

HNSCC

SCLC

AML

CRC

Germline

HL

FIG 1. Methods for Clinical Interpretations of Variants in Cancer (CIViC) single-molecule molecular inversion probe (smMIP) development and validation
using the Open-Sourced CIViC Annotation Pipeline (OpenCAP). The first series describes CIViC smMIP development. Variants were selected using sequence
ontology identification numbers (IDs) and the CIViC Variant Evidence Score. Subsequently, eligible variants were categorized based on length, and smMIP
reagents were designed to target regions of interest. The second series describes sample selection and sequencing methods. In total, there were 22 tumor
samples derived from 5 tumor subtypes. Of these 27 samples, 15 had tumor and paired normal samples, and 7 were tumor-only samples. The third series
shows the analysis used to validate the CIViC smMIP design. Variants were called using the pipeline described in Materials and Methods, and accuracy was
attained by comparing variants observed on original sequencing to variants observed using the CIViC smMIP capture panel. Variant allele frequencies (VAFs)
across both platforms were also compared. AML, acute myeloid leukemia; CRC, colorectal cancer; HL, Hodgkin lymphoma; HNSCC, head and neck
squamous cell carcinoma; SCLC, small-cell lung cancer.
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library preparation, and high-throughput sequencing. The
final sections describe identifying variants from raw se-
quencing data and annotating those variants for clinical
relevance.

Determining Eligible CIViC Variants for smMIP Capture

Variants in CIViC were filtered using their Variant Evidence
Score (required . 20 points) and sequence ontology
identification numbers (SOIDs; must be DNA based;
Appendix). Variants were also filtered if all evidence sup-
ported only germline clinical relevance, evidence was di-
rectly conflicting, or a majority of evidence in a container
variant (eg, MUTATION) pointed to a hotspot that was
already being covered. The remaining variants were eligi-
ble for the CIViC smMIP capture panel.

Designing smMIPs for the CIViC Capture Reagents

Variants were further categorized by length. If the variant
length was , 250 base pairs, the variant was eligible for
hotspot targeting. If the variant was . 250 base pairs, the
variant required either sparse or full tiling of the protein
coding exons (Appendix). For all variants, smMIPs were
designed and synthesized as previously described23 with
the single alteration that the “-double_tile_strands_
separately”24 flag was used with the MIPgen tool to sep-
arately capture each strand of DNA surrounding the target.

Rescue and Annotation of Clinically Relevant Variants

Variants called using the CIViC smMIP capture panel were
compared with variants called using original sequencing for
samples that had matched tumor and normal sequencing.
All genomic loci were manually reviewed23 using both the
smMIP aligned Binary Alignment Map (BAM) files and the
original aligned BAM files. Variants only identified using
smMIP sequencing were grouped into the following 4 cat-
egories: germline polymorphism, pipeline artifact (low variant
support or poor mapping), variant support on smMIP se-
quencing but no support on original sequencing, or variant
support on both smMIP sequencing and original se-
quencing. For variants that showed support on smMIP se-
quencing but no variant support on original sequencing, the
binomial probability was used to assess whether ≤ 3 variant-
supporting reads would be detected with 95% confidence
using the original coverage and the observed smMIP variant
allele frequency (VAF). The accession number for the first
release of the Database of Genotypes and Phenotypes study
was phs001890.v1.p1, and the accession number for first
release of the Sequence Read Archive was PRJNA529857.

RESULTS

Identification of Eligible CIViC Variants for

smMIP Targeting

At the time of the CIViC smMIP capture panel design, there
were 988 variants from 275 genes within the CIViC data-
base with at least 1 evidence item. After filtering based on
the Variant Evidence Score and the SOID (Appendix, Data
Supplement), smMIPs were designed to cover all eligible

CIViC variants. A set of 2,097 probes was developed and
tested on control samples. Of these, 70 probes showed
poor capture efficiency and were eliminated from the panel.
Removal of the underperforming probes affected 32 vari-
ants across 16 genes. The final capture reagent targeted
111 CIViC variants spanning approximately 61.5 kb of
genomic space (Data Supplement). When compared with
other pancancer panels, the CIViC capture panel showed
high overlap with previously defined clinical variants. For
example, the CIViC smMIP capture panel covered 10 of the
13 well-defined variants on FoundationOne CDx (EGFR:
exon 19, L858R, and T790M; BRAF: V600E/K; ERBB2
amplification; KRASG12/13;BRCA1; andBRCA2).24 The 3
variants on FoundationOne CDx that were not originally
covered by the smMIPs panel (KRAS wild type, NRAS wild
type, and ALK rearrangements) have all since attained
a Variant Evidence Score that would be sufficient for in-
clusion in a panel built today. Of the 111 targeted variants,
71 required hotspot targeting, 14 variants required sparse
exon tiling, and 26 required full exon tiling. The 111 variants
covered by the CIViC smMIP capture panel were based on
1,168 clinically relevant evidence items, whereby 820
evidence items (70%) predicted response to a therapeutic,
232 (20%) detailed prognostic information, 52 (4%) in-
dicated diagnostic information, and 64 (6%) supported
predisposition to cancer (Fig 2).

Tumor Samples Used to Validate CIViC smMIP Design

Samples used to validate the CIViC smMIP capture panel
design were derived from 5 different cancer genomic
studies (Data Supplement). Tumor and paired normal
samples were obtained from 5 individuals with head and
neck squamous cell carcinoma (HNSCC), 9 individuals
with small-cell lung cancer,25 and 1 individual with Hodgkin
lymphoma (HL). Tumor-only samples were obtained from
1 individual with HL, 1 individual with acute myeloid
leukemia,26 and 5 individuals with colorectal cancer (CRC).
In total, 37 samples were evaluated from 22 individuals.
Samples from the CRC cohort were formalin-fixed paraffin-
embedded, and all other samples were fresh frozen tissue.

Each of the 22 individuals had previously undergone whole-
exome or whole-genome sequencing, somatic variant call-
ing, and somatic variant refinement via manual review
(Appendix). Considering original sequencing, there were
12,602 putative somatic variants called for these 22 sam-
ples. The average variant burden was 573 variants per
sample, with a range of 2-3,900 variants per sample. Variant
coordinates from these samples were compared with the
genomic region covered by the CIViC smMIP capture panel
to determine potential validating variants. In total, there were
84 variants identified via original sequencing that overlapped
with the CIViC smMIP capture panel (Data Supplement).

smMIP Sequencing and Data Analysis

Initial quality check. The average number of tags captured
for all samples was 5.4 million (standard deviation,

Barnell et al
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3.3 million tags). One HNSCC normal sample failed smMIP
capture, 2 HNSCC tumor samples had significantly fewer
reads than the rest (ie, . 1 standard deviation), and 1 HL
tumor sample had reduced tag complexity relative to the
rest (ie,, 600,000 unique captured smMIPs). Sequencing
failure for these 4 samples was attributable to poor template
quality or quantity and not attributable to the capture re-
agents. All other samples passed sequencing quality
checks. After quality check, 31 samples derived from 19
individuals were eligible for reagent validation. These
samples had 65 variants derived from orthogonal se-
quencing that had overlap with the CIViC smMIP coverage
(Fig 3). The average consensus read depth for these 65
variants was 2,942 reads (standard deviation, 4,697
reads).

Accuracy of CIViC smMIP variant identification compared
with exome or genome variant identification. Of the 65
variants identified on exome sequencing, all but 4 were
also identified using CIViC smMIP sequencing (Fig 3).
One variant was missed as a result of lack of adequate
coverage, 2 variants were missed as a result of low-
performing probes, and 1 variant was retrospectively
considered ineligible as a result of smMIP design
(Appendix). After removing this variant from the list of el-
igible variants, the CIVIC smMIP capture sequencing
attained a 95% sensitivity for variant detection (n = 64
variants).

VAF correlation between CIViC smMIP sequencing and
exome or genome sequencing. VAFs obtained via original

sequencing were compared with the VAF obtained using
the CIViC smMIPs. To compare VAF quantitation across
platforms, the 19 variants obtained from samples that failed
the CIViC smMIP sequencing quality check were eliminated
(Fig 4A). Subsequently, we eliminated the 4 variants that
were not validated using the CIViC smMIP reagents
(Fig 4B). When comparing original VAFs to CIViC smMIP
VAFs, Pearson correlation for the remaining 61 variants was
0.885. There were several variants whereby the VAF ob-
served by the CIViC smMIP sequencing was lower than that
observed by the original sequencing. These outliers were
not associated with tumor type, sequencing mass input,
average coverage, presence of matched normal, or sample
type (Figs 4C to 4F).

Analysis of Variants Only Identified Using CIViC

smMIP Sequencing

Using samples that had sequencing data for both tumor
and matched normal (n = 12 samples), we evaluated
whether the targeted CIViC smMIP sequencing could
identify clinically relevant variants that had not been ob-
served by the original sequencing. There were 273 variants
recovered by CIViC smMIP sequencing that were not
identified using original sequencing. After manually
reviewing these variants within the original exome or ge-
nome alignments, 55 variants (20.1%) were identified as
germline mutations. smMIP sequencing VAF distribution at
50% and 100% further supported that these variants were
germline polymorphisms (Fig 5A). An additional 36 variants
(13.2%) were thought to be caused by pipeline artifacts
and attributable to assumptions underlying automated
callers or alignment problems. The majority of these arti-
facts were associated with nucleotide repeats in the ref-
erence sequence (Fig 5B). There were 171 variants
(62.6%) called as somatic using CIViC smMIPs that did not
have any variant support on the original sequencing. For
these variants, we calculated the binomial probability that
≤ 3 reads would support the variant given the original
coverage (number of chances to get a variant supporting
read) and the observed smMIP VAF (likelihood that a read
would show variant support). If the binomial probability of
≤ 3 variant-supporting reads was . 95%, then it was
considered statistically unlikely that a variant would be
called using original sequencing data. Using this calcula-
tion, 162 variants (94.7%) showed insufficient coverage in
the original sequencing for detection (Fig 5C). Finally, 11
variants (4.2%) were not called as somatic on original
sequencing but did show some variant support in those
original sequencing data. The VAFs observed on original
sequencing data were strongly correlated with the VAFs
observed using CIViC smMIP sequencing (Pearson’s
r = 0.92; Fig 5D). Reviewing manual review files from the
original sequencing, we observed that 6 of these variants
failed manual review as a result of low VAF, 4 variants had
not been called by automated somatic variant callers, and
1 variant failed manual review as a result of a perceived
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FIG 2. Regions targeted by the Clinical Interpretations of Variants in
Cancer (CIViC) single-molecule molecular inversion probes (smMIPs)
are, by design, supported by extensive clinical relevance according to
the CIViC database. Variants that were eligible for CIViC smMIP de-
velopment were divided into various coverage methods based on
sequence ontology identification number and length. The bar graph
shows the total number of evidence items used for each of the groups
parsed by the evidence type.
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sequencing artifact. In summary, there were 182 potentially
clinically relevant somatic variants missed by original se-
quencing, primarily as a result of insufficient coverage, that
contained CIViC variant annotations.

Annotation of CIViC smMIP Capture Panel Somatic

Variants Using OpenCAP

Using the OpenCAP annotation software, we developed
clinical interpretation reports for all variants observed using
the CIViC smMIP capture panel. In total, there were 1,340
variants observed across the 19 samples that passed
smMIP sequencing. Of the 1,340 variants observed, 127
had direct matches (chromosome, start, stop, reference,
variant) with CIViC annotations (average, 6.7 variants per
sample). The OpenCAP output report for variants observed
on original sequencing and validated by the CIViC smMIP
capture panel for CRC1 is shown in the Data Supple-
ment. For each identified clinical variant, links to external

databases, CIViC variant descriptions, associated CIViC
assertions, and associated CIViC evidence items are pro-
vided. Associated evidence items provide a brief de-
scription of the clinical relevance, links to CIViC evidence
items, and associated citations. An illustrative output report
that displays most OpenCAP features, including CIViC
variant descriptions and CIViC assertions, was created
using a previously reported patient from the literature27

(Data Supplement).

DISCUSSION

OpenCAP is a resource for users to develop a cus-
tom capture panel that can be easily linked to actively
maintained clinical relevance summaries. The methods
described by OpenCAP to build a clinical capture panel
offer several advantages relative to existing design par-
adigms. Use of an open-source database provides
a systematic mechanism to survey existing literature
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within precision oncology to identify variants that are
relevant for capture. In addition, the public API permits
rapid mapping of identified somatic and germline vari-
ants to CIViC clinical relevance summaries. Most im-
portantly, the variants covered by CIViC and associated
clinical summaries can be updated in real time as
knowledge is entered into the database to accommodate
new information discovered within the field of precision
oncology.

The smMIP capture method for sequencing provides
inherent error correction capability, scalability to detect
ultrasensitive variation, and cost effectiveness within
a modular design. Combining the public access CIViC
database with an ultrasensitive and versatile capture re-
agent provides an advantageous and principled method
for building precision oncology capture reagents. This
approach could enable a standardized framework for

detecting and interpreting cancer-relevant genomic var-
iation, lowering barriers to use of genomic analysis in the
clinical practice of oncology. For maximal flexibility,
OpenCAP describes methods for using both unique
molecular identifiers (UMIs) and non–UMI-based probes
to capture variants of interest.

The CIViC smMIP capture panel used Variant Evidence
Scores and SOIDs to identify variants of interest for tar-
geting. However, alternate filtering strategies have been
outlined in OpenCAP documents. Regardless of variants
targeted for capture, the presented research helped to
show that CIViC variants and variant coordinates can be
used for accurate capture panel design (95% detection
accuracy with Pearson’s r = 0.885 for VAFs). This finding
helps to validate that the methods described in OpenCAP
can be used to accurately interrogate desired variants of
interest.
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FIG 4. Variant allele frequencies (VAFs) observed using original exome or whole-genome sequencing compared with VAFs observed using Clinical In-
terpretations of Variants in Cancer (CIViC) single-molecule molecular inversion probe (smMIP) sequencing. (A) Correlation of VAF with original sequencing
parsed by sequencing status (ie, passed sequencing if total sequencing counts were . 1 standard deviation from the mean and tag complexity was .

600,000 unique captured smMIPs). (B) Correlation of VAF with validation status (ie, true if the variant identified using exome or genome sequencing was
identified on CIViC smMIP sequencing). (C) Correlation of VAF parsed by coverage at variant loci. (D) Correlation of VAF parsed by DNAmass input for library
construction. (E) Correlation of VAF parsed by presence or absence of matched normal tissue. (F) Correlation of VAF parsed by tumor type. AML, acute
myeloid leukemia; CRC, colorectal cancer; HL, Hodgkin lymphoma; OSCC, oral squamous cell carcinoma; SCLC, small-cell lung cancer.
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Like all targeted reagents, the preliminary CIViC smMIP
design has limitations that can be addressed with future
iterations. First, the reagent design is limited by the current
knowledge within CIViC. Extensive curation from certain
groups (eg, the University Health Network curation of
VHL variants) disproportionately increases representation
for certain genes, cancers, and variant types. Conversely,
lack of curation in certain areas shows a disproportionate
decreased representation. To address existing curation
disparities, CIVIC has joined the Variant Interpretation

for Cancer Consortium (VICC)28 to integrate multiple
variant interpretation knowledgebases into a single meta-
knowledgebase. Successful execution of the aims outlined
by the VICC would result in harmonization of information
from CIViC, the Cancer Genome Interpreter,29 Clinical
Knowledgebase,30 MolecularMatch, OncoKB,16 Precision
Medicine Knowledgebase,31 and others. This would allow
users to leverage variant interpretations across multiple
platforms for building custom capture panels that are linked
to clinical relevance summaries.
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FIG 5. Analysis of variants rescued by Clinical Interpretations of Variants in Cancer (CIViC) single-molecule
molecular inversion probe (smMIP) sequencing for samples with both tumor and matched normal. There were 217
variants called as somatic by CIViC smMIP sequencing that were not identified by the original sequencing. All variants
were manually reviewed using both CIViC smMIP sequencing data and original sequencing data. (A) During manual
review, 55 variants were identified as germline. A histogram shows that the distribution of the smMIP variant allele
frequencies (VAFs) for these germline variants was observed at 50% and 100% VAF, indicating heterozygosity and
homozygosity, respectively. (B) An additional 36 variants were identified as sequencing artifacts. Most artifacts were
either mononucleotide repeats (MN), dinucleotide repeats (DN), or tandem repeats (TR). Other artifacts include
multiplemismatches (MM) ormultiple variants (MV). (C) Duringmanual review, 162 variants did not show any support
in the original sequencing data. Most unsupported variants did not have sufficient coverage to be detected based on
a binomial probability of≤ 3 variant-supporting reads (seeMaterials andMethods). (D) The remaining 11 variants had
variant support in original sequencing but were not called as somatic in final original annotation. The scatter plot shows
correlation between original VAF and CIViC smMIP VAF for these variants.
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In summary, the methods described here validate that com-
munity curated data on clinically relevant cancer variants can
provide a systematic and dynamic method for capture re-
agent design. The curated coordinates in the database ac-
curately map to desired variants, and probes designed using

these coordinates show accurate recapitulation of
the genomic landscape described by orthogonal sequenc-
ing. It is our hope that OpenCAP will provide the research
community with a novel method to develop next-generation
sequencing–based oncology panels.
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APPENDIX

Determining Eligible Clinical Interpretations of Variants in

Cancer Database Variants for Single-Molecule Molecular

Inversion Probe Capture

Filtering based on the Variant Evidence Score. All variants
within the Clinical Interpretations of Variants in Cancer (CIViC) data-
base are built on evidence statements that have been manually cu-
rated from the medical literature. Given that variants within the CIViC
database have diverse quantity and quality of evidence support, the
Variant Evidence Score was developed to calculate the relative
abundance of total available curated evidence for each variant. The
Variant Evidence Score reflects the strength of the evidence that was
curated and the total amount of curation that has been completed for
each variant. To determine evidence strength, the Evidence Level
Score and the Trust Rating Score were calculated. The Evidence Level
Score is a 10-point scale that weighs the evidence strength based on
category. Broadly, highest points are awarded to large clinical studies,
and lower points are awarded to case studies, in vitro studies, and
inferential evidence. The Trust Rating Score is a 5-star scale that
reflects the curator’s confidence in the quality of the study. To de-
termine the total level of curation for each variant, Evidence Level
Scores were multiplied by Trust Rating Scores and summed across all
evidence items. This final value (ie, the CIViC Variant Evidence Score)
was incorporated into the CIViC database and is now available for all
variants in the CIVIC Web interface, regular data releases, and ap-
plication programming interface. Using the CIViC Variant Evidence
Score, variants within the top 10% of total curation (corresponding to
a Variant Evidence Score . 20 points) were selected to develop the
CIViC single-molecule molecular inversion probe (smMIP) capture
panel and were eligible for smMIP targeting. Of note, the CIViC Variant
Evidence Score evaluates the total level of curation within the database
and does not reflect the community consensus of clinical relevance. In
addition, the CIViC Variant Evidence Score does not differentiate from
conflicting or confounding evidence and weights all evidence based on
the algorithm described earlier.

Filtering based on the sequence ontology identification
number. Variants were also filtered to only include variants that could
be analyzed using a DNA-based sequencing platform. This required
use of curated sequence ontology identification numbers (SOIDs).
Within CIViC, SOIDs are manually classified as DNA based, RNA
based, and/or protein based (Data Supplement). For example, variants
with the variant type of “missense_variant” would be labeled as “DNA-
based,” whereas variants with the variant type of “transcript_variant”
would be labeled as “RNA-based.” Variants that had a “DNA-based”
SOID were considered eligible for smMIP targeting, and variants whose
SOIDs were “RNA-based” and/or “protein-based” were ineligible.

Categorization of Variants Based on Length

Using CIViC curated coordinates, variant length was determined (ie,
variant start position minus variant stop position). This difference
inferred the total number of smMIP probes required to adequately
assess each variant.

Hotspot targeting. If the variant length was , 250 base pairs, the
variant was eligible for hotspot targeting. For variants that required
hotspot targeting, smMIP probes were designed for the genomic region
indicated in the CIViC database.

Sparse exon tiling and full exon tiling. If the variant was. 250
base pairs, the variant required some or total tiling of the protein coding
exons. For all variants that required sparse exon tiling or full exon tiling,
the representative transcript from the CIViC database was used to
obtain all possible exons associated with each Ensembl gene. The
Ensembl gene was used to obtain all possible exons (bio-
mart=“ENSEMBL_MART_ENSEMBL”, host=“grch37.ensembl.org”,
dataset=“hsapiens_gene_ensembl”). Exons were further filtered by
Biotype to remove untranslated regions. Some large-scale copy

number variants (ie, “AMPLIFICATION,” “LOSS,” “DELETION”) were
eligible for sparse tiling, wherein 10 probes distributed across the
exons of the gene were retained to enable assessment of copy number
state. Other variant types such as “MUTATION” or “FRAMESHIFT
MUTATION” required tiling of all protein coding exons. Categorization
of all variants eligible for capture is described in the Data Supplement.
For variants that required full exon tiling, overlapping smMIPs (ie, at
least 1 base pair of overlap) were designed to tile across all protein
coding exons in the gene that encompassed the variant. For variants
that required sparse exon tiling, approximately 10 smMIPs were
designed to cover a portion of the transcript.

smMIP Sequencing and Data Analytics

Sequencing library construction and balancing of the probe pool were
performed as described previously,21 and sequencing was performed
using an Illumina NextSEquation 500 (Illumina, San Diego, CA).
Probes were excluded from the final reagent if they demonstrated poor
hybridization to target sequence during initial quality checks.

Sequence data analysis was performed as previously described21 with 3
enhancements. First, consensus reads were generated using the fgbiotools
(http://fulcrumgenomics.github.io/fgbio/) CallMolecularConsensusReads
utility with parameters “–error-rate-post-umi=30–min-reads=2–min-
input-base-quality=20”. Second, a custom variant caller was used to
identify all consensus calls at a site having at least 2 supporting reads
with a minimum specified mapping quality (mapping quality score
. 0). Third, variants were required to be detected on at least 4 DNA
strands (at least 2 positive and at least 2 negative) to be considered
real, rather than postbiologic artifacts (EijkelenboomA, et al: J Mol Diagn
18:851-863, 2016). Collectively, these provisions require that at least 2
reads are derived from a common unique molecular identifier to create
a consensus read and that multiple consensus reads in both directions
support the apparent variant. This helps to exclude preanalytic artifacts
reflecting DNA damage and stochastic errors that occur during library
construction and sequencing. DNA input ranged from 100-500 ng
across samples; however, any sample with an overlapping variant that
had a variant allele frequency (VAF) , 5% used 500 ng to increase the
number of template molecules interrogated.

Orthogonal Sequencing and Data Analytics

Orthogonal sequencing data from previously conducted whole-exome
or genome sequencing was used to validate the CIViC smMIP capture
design. Sequencing alignment and somatic variant calling for the acute
myeloid leukemia (AML) sample AML31 was performed according to
Griffith et al.26 Briefly, reads were aligned to GRCh37 using Burrows-
Wheeler Aligner (BWA) v0.5.9 (Li H, Durbin R: Bioinformatics 25:
1754-1760, 2009), and variants were called using 1 of 7 variant callers
listed in the article. Sequencing data from the small-cell lung cancer
(SCLC) samples, oral squamous cell carcinoma (OSCC) samples, and
Hodgkin lymphoma (HL) samples were analyzed using the Genome
Modeling System2 at the McDonnell Genome Institute. Reads from
these studies were aligned to the reference genome (hg19/GRCh37 or
hg38/GRCh38) using BWA-MEM v0.7.10 (Li H, https://arxiv.org/abs/
1303.3997), and duplicates were marked by Picard (http://
broadinstitute.github.io/picard/) and/or SAMBLASTER v0.1.22
(Faust GG, Hall IM: Bioinformatics 30:2503-2505, 2014). For the
SCLC samples, single nucleotide variants (SNVs) were called using
SomaticSniper (Larson DE, et al: Bioinformatics 28:311-317, 2012;
Larson DE, et al: Curr Protoc Bioinformatics 45:15.5.1-8, 2014),
VarScan (Koboldt DC, et al: Genome Res 22:568-576, 2012), and
Strelka (Saunders CT, et al: Bioinformatics 28:1811-1817, 2012)12;
small insertions and deletions (indels) were called using GATK
(McKenna A, et al: Genome Res 20:1297-1303, 2010), Pindel (Ye K,
et al: Bioinformatics 25:2865-2871, 2009), VarScan2 (Reble E, et al:
Psychiatr Genet 27:62-70, 2017), and Strelka. For OSCC samples,
SNVs were detected using SomaticSniper v1.0.4, VarScan2 v2.3.6,
Strelka v1.0.11, SAMtools r982 (Li H, et al: Bioinformatics 25:2078-
2079, 2009), and Mutect v1.1.4 (Cibulskis K, et al: Nat Biotechnol 31:
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213-219, 2013). Small indels were detected by GATK v5336 (https://
software.broadinstitute.org/gatk/), VarScan2, Strelka, and Mutect. For
HL samples, SNVs were called using the intersection of SomaticSniper
v1.0.4, VarScan v2.3.6, Strelka v1.0.11, and Mutect v1.1.4, and indels
were called using GATK, Pindel v0.5, VarScan v2.3.6, and Strelka
v1.0.11. For these 3 cohorts, variants identified by automated callers
were subjected to heuristic filtering (removal of variants with low VAF
[, 5%] or low coverage [, 20 times in tumor or normal track]), and
false positives were removed via manual somatic variant refinement.23

If variant coordinates corresponded to GRCh38, their coordinates were
converted to GRCh37 using LiftOver (Hinrichs AS, et al: Nucleic Acids
Res 34:D590-D598, 2006). For the colorectal cancer (CRC) cohort,
sequencing, variant calling, and clinical annotation were performed
according to methods highlighted in Pritchard et al (J Mol Diagn 16:56-
67, 2014). Briefly, sequencing was performed using Illumina next-
generation sequencing (Illumina, San Diego, CA), and sequencing
reads were aligned using BWA v0.6.1 and SAMtools v0.1.18. Indel
realignment was then performed using GATK v1.6, and duplicate
reads were removed using Picard v1.72. SNV and indel calling was
performed using the GATK Universal Genotyper with default param-
eters and VarScan v2.3.2.

Assessment of Variants Missed Using the CIViC smMIP

Capture Panel

Of the 65 variants identified on exome sequencing, all but 4 were also
identified using CIViC smMIP sequencing. One variant was missed as
a result of lack of adequate coverage, 2 variants weremissed as a result
of low-performing probes, and 1 variant was retrospectively considered
ineligible as a result of smMIP design. The variant missed as a result of
inadequate coverage was a TP53 (p.G266R) variant identified in the
AML31 tumor sample. Original sequencing indicated that this variant
was present at 0.04% VAF; therefore, given smMIP coverage of 2,388
reads at this site, there was only a 0.01% chance that this variant would
have been detected (1-tailed probability of≥ 4 reads [K] of 2,388 reads
[n]; P = .0046). However, this low-prevalence variant could have been
recovered given additional sequence coverage. In addition, there were
2 variants missed as a result of low molecular inversion probe
(MIP) performance. The first variant that was missed (chr10:
g.89690805G.A in the SCLC8 tumor sample at 94%VAF) was a result
of poor performance of the MIP covering the region of interest in the
reverse direction. This MIP showed only 1 aligned read across all 36

samples and had no aligned reads in SCLC8. Despite the fact that there
was extensive support from the forward MIP (95% VAF with 34 of 35
consensus reads), the requirement that both forward and reverse
reads show support prevented this variant from being called. The
second missed variant (PTEN e8-1 in the SCLC4 tumor sample at
100% VAF) was a result of low performance of MIPs in both directions.
Even though both the forward and the reverse MIPs showed variant
support, the forward MIP only contained 2 consensus reads and the
reverse MIP only contained 1 consensus read, preventing it from being
called as somatic. The final variant (chr17:g7577094C.T in the CRC5
tumor sample at 32% VAF) was retrospectively considered ineligible
because the original smMIPs developed to cover the eligible STK
variant called for sparse tiling (ie, identification of copy number
change). As such, the variant was contained by a region that did not
have full coverage in the forward direction. When evaluating the re-
verse MIP that contained this site, we observed a 34% VAF (402 of
1,184 reads), which was comparable to the original sequencing data.
However, lack of a secondary probe designed against the comple-
mentary DNA strand prevented this variant from being called as
somatic.

Code and Accessibility

All raw data, analysis, and preprocessing code, are publicly available
on the GitHub repository (https://github.com/griffithlab/civic-panel/).
All plots were produced using the MatPlotlib library in Python (Hunter
JD: Comput Sci Eng 9:90-95, 2007). The raw sequencing data are
publicly available for most projects included in this study (Data
Supplement). The smMIP sequence analysis pipeline is accessible on
bitbucket (https://bitbucket.org/uwlabmed/smmips_analysis).

Data Statement

The raw smMIP sequencing data associated with samples from the
McDonnell Genome Institute (head and neck squamous cell carci-
nomas, SCLCs, HLs, and AMLs) have been submitted to the Database
of Genotypes and Phenotypes under accession No. phs001890.v1.p1.
Institutional review board approval, consent forms and versions, and
other demographic data are provided in this submission. The raw
smMIP sequencing data associated with samples from Washington
University (CRCs) have been submitted to the Sequence Read Archive
under accession No. PRJNA529857.
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