39 research outputs found

    Comparing Aerial Lidar Observations with Terrestrial Lidar and Snow-Probe Transects from NASA\u27s 2017 SnowEx Campaign

    Get PDF
    NASA\u27s 2017 SnowEx field campaign at Grand Mesa, CO, generated Airborne Laser Scans (ALS), Terrestrial Laser Scans (TLS), and snow‐probe transects, which allowed for a comparison between snow depth measurement techniques. At six locations, comparisons between gridded ALS and TLS observations, at 1‐m resolution, had a median snow depth difference of 5 cm, root‐mean‐square difference of 16 cm, mean‐absolute difference of 10 cm, and 3‐cm difference in standard deviation. ALS generally had greater but similar snow depth values to TLS, and results were not sensitive to the gridded cell size between 0.5 and 5 m. The greatest disagreements were where snow‐off TLS scans had shrubs and high incidence angles, leading to deeper snow depths (\u3e10 cm) from ALS than TLS. The low vegetation and oblique angles caused occlusion in the TLS data and thus produced higher snow‐off bare Earth models relative to the ALS. Furthermore, in subcanopy areas where both ALS and TLS data existed, snow depth differences were comparable to differences in the open. Meanwhile, median values from 52 snow‐probe transects and near‐coincident ALS data had a mean difference of 6 cm, root‐mean‐square difference of 8 cm, mean‐absolute difference of 7 cm, and a mean difference in the standard deviation of 1 cm. Snow depth probes had greater but similar snow depth values to ALS. Therefore, based on comparisons with TLS and snow depth probes, ALS captured snow depth magnitude with better than or equal agreement to what has been reported in previous studies and showed the ability to capture high‐resolution spatial variability

    Vegetation Mapping in a Dryland Ecosystem Using Multi-Temporal Sentinel-2 Imagery and Ensemble Learning

    Get PDF
    Remote sensing of dryland ecosystem vegetation is notably problematic due to the low canopy cover and fugacious growing seasons. Relatively high temporal, spatial, and spectral resolution of Sentinel-2 imagery can address these difficulties. In this study, we combined vegetation indices with robust field data and used a Random Forests ensemble learning model to impute landcover over the study area. The resulting vegetation map product will be used by land managers, and the mapping approaches will serve as a basis for future remote sensing projects using Sentinel-2 imagery and machine learning

    Applying Cloud-Based Computing and Emerging Remote Sensing Technologies to Inform Land Management Decisions

    Get PDF
    Who: Boise State University and Mountain Home Air Force Base What: Creating a species level classification map through the use of Google Earth Engine (GEE), a cloud-based computing platform, to map invasive species When: In-situ data collected in Summer 2018, a continuation of data collected in Summer 2016. Classification was created in Fall 2018. Unmanned aerial vehicles (UAV) flights in August 2018. Where: Mountain Home Air Force Base (MHAFB) in southwest Idaho, ecosystem is in the Great Basin Range (GBR) Why: The introduction of exotic species like cheatgrass (Bromus tectorum) has drastically altered the fire cycle of the Northern Great Basin (NGB) from 50 – 100 year burn intervals to 10 year intervals (1). Factors such as soil, elevation, temperature, and precipitation can affect the resilience of a sagebrush steppe ecosystem to invasive species. Remote sensing techniques allow large scale analysis of invasive encroachment and assessment of conservation efforts and land management

    2013 Morley Nelson Snake River Birds of Prey National Conservation Area RapidEye 7m Landcover Classification

    Get PDF
    Boise State University conducted an area-wide vegetation classification of the Orchard Combat Training Center (OCTC) for the Idaho National Guard/IDARNG and expanded the classification to cover areas of the Morley Nelson Snake River Birds of Prey National Conservation Area for the Bureau of Land Management. This report documents the field data collection and processing, image acquisition and processing, and image classification. Work was performed between January 2012 – October 2015

    Lidar Aboveground Vegetation Biomass Estimates in Shrublands: Prediction, Uncertainties and Application to Coarser Scales

    Get PDF
    Our study objectives were to model the aboveground biomass in a xeric shrub-steppe landscape with airborne light detection and ranging (Lidar) and explore the uncertainty associated with the models we created. We incorporated vegetation vertical structure information obtained from Lidar with ground-measured biomass data, allowing us to scale shrub biomass from small field sites (1 m subplots and 1 ha plots) to a larger landscape. A series of airborne Lidar-derived vegetation metrics were trained and linked with the field-measured biomass in Random Forests (RF) regression models. A Stepwise Multiple Regression (SMR) model was also explored as a comparison. Our results demonstrated that the important predictors from Lidar-derived metrics had a strong correlation with field-measured biomass in the RF regression models with a pseudo R2 of 0.76 and RMSE of 125 g/m2 for shrub biomass and a pseudo R2 of 0.74 and RMSE of 141 g/m2 for total biomass, and a weak correlation with field-measured herbaceous biomass. The SMR results were similar but slightly better than RF, explaining 77–79% of the variance, with RMSE ranging from 120 to 129 g/m2 for shrub and total biomass, respectively. We further explored the computational efficiency and relative accuracies of using point cloud and raster Lidar metrics at different resolutions (1 m to 1 ha). Metrics derived from the Lidar point cloud processing led to improved biomass estimates at nearly all resolutions in comparison to raster-derived Lidar metrics. Only at 1 m were the results from the point cloud and raster products nearly equivalent. The best Lidar prediction models of biomass at the plot-level (1 ha) were achieved when Lidar metrics were derived from an average of fine resolution (1 m) metrics to minimize boundary effects and to smooth variability. Overall, both RF and SMR methods explained more than 74% of the variance in biomass, with the most important Lidar variables being associated with vegetation structure and statistical measures of this structure (e.g., standard deviation of height was a strong predictor of biomass). Using our model results, we developed spatially-explicit Lidar estimates of total and shrub biomass across our study site in the Great Basin, U.S.A., for monitoring and planning in this imperiled ecosystem

    Semi-Arid Ecosystem Plant Functional Type and LAI from Small Footprint Waveform Lidar

    Get PDF
    Plant functional traits such as vegetation structure, density, and composition are indicators of ecosystem response to climate and human driven disturbances. We used small footprint waveform lidar with an ensemble random forest approach to differentiate the functional traits in a western US semi-arid ecosystem. We introduced a new gap fraction based leaf area index (LAI) estimator using lidar derived parameters. Results showed 60% - 89% accuracies discriminating plant functional types and estimating shrub LAI. These results imply the potential of waveform lidar to quantify plant functional traits in low-stature vegetation which is useful to assess climate impact in semi-arid ecosystems

    Investigating the Relationships Between Canopy Characteristics and Snow Depth Distribution at Fine Scales: Preliminary Results from the SnowEX TLS Campaign

    Get PDF
    In temperate, mountainous regions across the world, upwards of 60% of seasonal surface water is stored in the snowpack. In forested areas, characterizing the effect of forest structure on the spatial distribution of snow can provide insight into hydrological modelling efforts, and forest management decisions. Just as snow drifts and scours correspond to underlying topography, wind redistribution can create patterns in snow distribution which reflect the surrounding canopy structure. Using variables derived from terrestrial laser scans collected in Grand Mesa, Colorado, the effect of forest structure and topography on snow depth is analyzed statistically

    Regional scale dryland vegetation classification with an integrated lidar-hyperspectral approach

    Get PDF
    The sparse canopy cover and large contribution of bright background soil, along with the heterogeneous vegetation types in close proximity, are common challenges for mapping dryland vegetation with remote sensing. Consequently, the results of a single classification algorithm or one type of sensor to characterize dryland vegetation typically show low accuracy and lack robustness. In our study, we improved classification accuracy in a semi-arid ecosystem based on the use of vegetation optical (hyperspectral) and structural (lidar) information combined with the environmental characteristics of the landscape. To accomplish this goal, we used both spectral angle mapper (SAM) and multiple endmember spectral mixture analysis (MESMA) for optical vegetation classification. Lidar-derived maximum vegetation height and delineated riparian zones were then used to modify the optical classification. Incorporating the lidar information into the classification scheme increased the overall accuracy from 60% to 89%. Canopy structure can have a strong influence on spectral variability and the lidar provided complementary information for SAM’s sensitivity to shape but not magnitude of the spectra. Similar approaches to map large regions of drylands with low uncertainty may be readily implemented with unmixing algorithms applied to upcoming space-based imaging spectroscopy and lidar. This study advances our understanding of the nuances associated with mapping xeric and mesic regions, and highlights the importance of incorporating complementary algorithms and sensors to accurately characterize the heterogeneity of dryland ecosystems

    Airborne and Spaceborne Lidar Reveal Trends and Patterns of Functional Diversity in a Semi-Arid Ecosystem

    Get PDF
    Assessing functional diversity and its abiotic controls at continuous spatial scales are crucial to understanding changes in ecosystem processes and services. Semi-arid ecosystems cover large portions of the global terrestrial surface and provide carbon cycling, habitat, and biodiversity, among other important ecosystem processes and services. Yet, the spatial trends and patterns of functional diversity in semi-arid ecosystems and their abiotic controls are unclear. The objectives of this study are two-fold. We evaluated the spatial pattern of functional diversity as estimated from small footprint airborne lidar (ALS) with respect to abiotic controls and fire in a semi-arid ecosystem. Secondly, we used our results to understand the capabilities of large footprint spaceborne lidar (GEDI) for future applications to semi-arid ecosystems. Overall, our findings revealed that functional diversity in this ecosystem is mainly governed by elevation, soil, and water availability. In burned areas, the ALS data show a trend of functional recovery with time since fire. With 16 months of data (April 2019-August 2020), GEDI predicted functional traits showed a moderate correlation (r = 41–61%) with the ALS predicted traits except for the plant area index (PAI) (r = 11%) of low height vegetation (<5 m). We found that the number of GEDI footprints relative to the size of the fire-disturbed areas (=< 2 km2) limited the ability to estimate the full effects of fire disturbance. However, the consistency of diversity trends between ALS and GEDI across our study area demonstrates GEDI’s potential of capturing functional diversity in similar semi-arid ecosystems. The capability of spaceborne lidar to map trends and patterns of functional diversity in this semi-arid ecosystem demonstrates its exciting potential to identify critical biophysical and ecological shifts. Furthermore, opportunities to fuse GEDI with complementary spaceborne data such as ICESat-2 or the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR), and fine scale airborne data will allow us to fill gaps across space and time. For the first time, we have the potential to monitor carbon cycle dynamics, habitats and biodiversity across the globe in semi-arid ecosystems at fine vertical scales

    Remote Sensing of Drylands: Applications of Canopy Spectral Invariants

    Get PDF
    Remote sensing plays an important role in understanding the structure and function of global terrestrial ecosystems. In this project our research focus was to characterize the dryland vegetation structure and function in the western US. Sparse distribution of vegetation, low amount of leaves on the canopies and the bright soil underneath the canopy make remote sensing of drylands a challenging task. To achieve our research goal we collected aerial and ground based optical hyperspectral and lidar data concurrent to our field campaign. We studied the potential and limitations of these sensors to retrieve canopy biochemistry and structure and to map the vegetation cover at species level
    corecore