Boise State University ScholarWorks

2018 Graduate Student Showcase

Conferences

4-26-2018

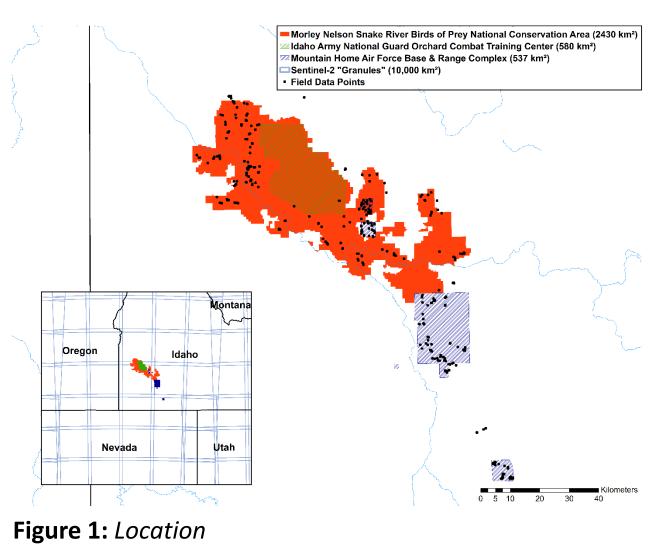
Vegetation Mapping in a Dryland Ecosystem Using Multi-Temporal Sentinel-2 Imagery and Ensemble Learning

Josh Enterkine Boise State University

Megan Gallagher Boise State University

Nancy Glenn Boise State University

Lucas Spaete Boise State University

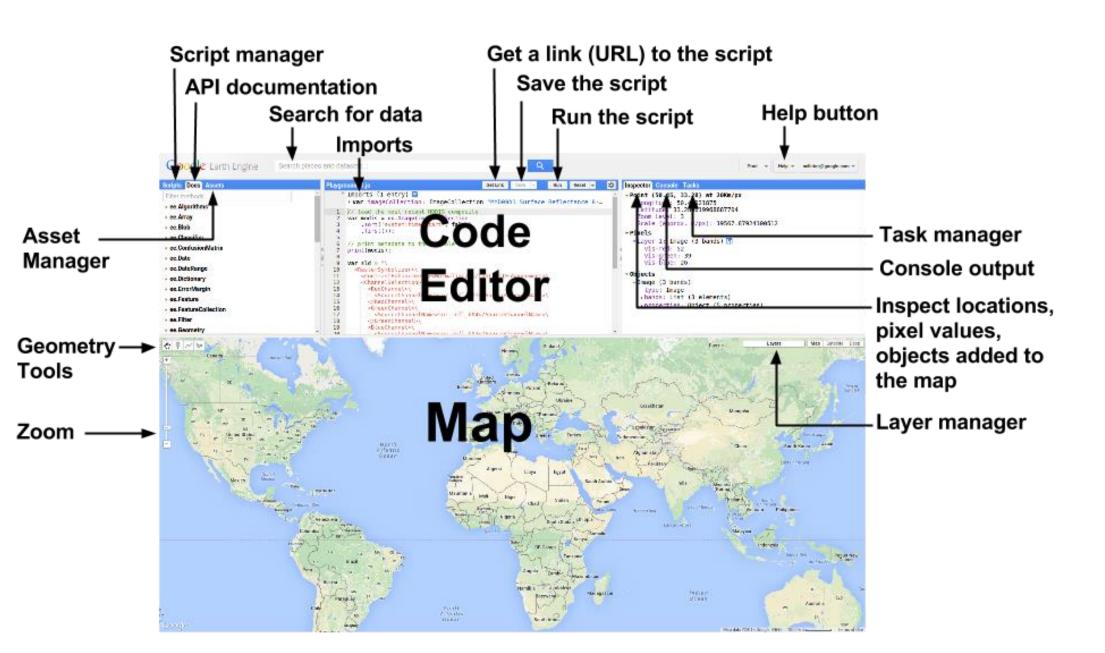

1. Background

Motivation:

- Mapping vegetation in dryland ecosystems is important for conservation and restoration efforts, rangeland management, and fire prediction.
- Relatively low fractions of vegetative cover (e.g. shrubs and bunchgrasses) make mapping and quantifying vegetation in dryland ecosystems challenging.
- New imaging systems, machine learning algorithms, and powerful computing platforms enable large-scale remote sensing studies of vegetation cover and phenology that can be quickly updated or modified.

Location:

- Our field study area is a National Conservation Area (NCA) that supports North America's highest density of nesting raptors.
- The NCA multi-use area has military training, grazing, power generation, and recreation
- Elevation ranges from 687 to 1111 m above sea level
- Annual precipitation is 0-20 cm in SW, to 30-36 cm in NE


Data:

- We used the following data in this study:
- 8 cloud-free dates of Sentinel-2 satellite imagery (Table 1)
- 34 spectral indices for each date (e.g. *Normalized* Difference Vegetation Index, or 'NDVI')
- 215 field data 'signature plots' of vegetation and land cover types (Figure 6 in **3. Results**) for training and validation

2. Methods

Processing Environment: Google Earth Engine

- Google Earth Engine (GEE) is a cloud-based platform developed to access and analyze remote sensing and other large-scale spatial data. (Figure 2)
- JavaScript or Python API
- Google servers host data, process script
- Free for research, education, and non-profit use

Figure 2: Schematic of Google Earth Engine Code Editor interface⁵

Vegetation Mapping in a Dryland Ecosystem Using Multi-temporal Sentinel-2 Imagery and Ensemble Learning

Josh Enterkine, Megan Gallagher, Nancy Glenn, Lucas Spaete

Boise State University, Department of Geosciences, Boise Center Aerospace Laboratory *Contact: joshenterkine@u.boisestate.edu,* https://bcal.boisestate.edu/ @BCAL_Boise

Table 1: Imaging Dates with < 10% Cloud Cover
2016-03-30
2016-03-30
2016-06-28
2016-07-18
2016-07-28
2016-09-16
2016-09-26
2016-11-05

2. Methods (continued)

Remote Sensing Data: Sentinel-2

- The two Sentinel-2 satellites are part of the Global Monitoring for Environment and Security (GMES) programme, a joint initiative of the European Commission and the European Space Agency.
- Designed to monitor land cover and coastal waters as a continuation of the SPOT and Landsat missions. (Table 2)
- Sentinel-2A was launched on 23 June 2015, Sentinel-2B on 7 March 2017.²

Table 2: Sentinel-2 Satellite Constellation and Sensor Characteristics ²		
Number of Satellites	2	
Orbit Altitude	786 km	
Swath Width & Data-take Length	290 km by 15,000 km - s <i>ee Figure 5</i>	
Revisit Time	5 days (equator), 2-3 days (mid-latitud	
Spectral Instrument	13 in visible, near infrared, and shortw 12 bit - s <i>ee Figure 3</i>	
Ground Sampling Distance	10 m, 20 m, 60 m	
Products Levels	L1-B (Top-of-atmosphere radiance, 25 or 'granules') L1-C (TOA reflectance, orthorectified a registered, 100 km by 100 km 'granule L2-A (Bottom-of-atmosphere reflectan km tiles) *processed user-side with SN	
Data Access	ESA's Copernicus Data Hub, USGS' Ear	

Comparison of Landsat 7 and 8 bands with Sentinel-2

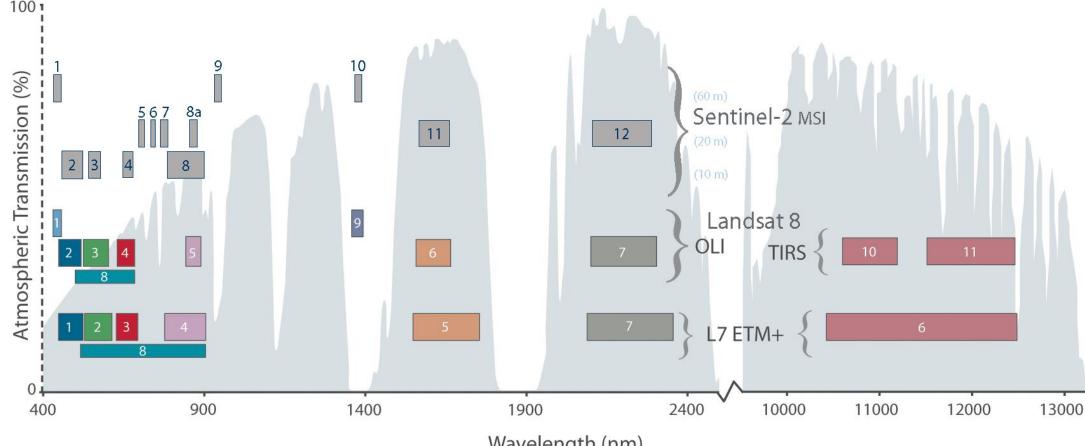


Figure 3: Sentinel-2 Spectral and Spatial Resolution vs. Landsat 7 & 8³

Caveats:

- S-2 naming changed after 6 December 2016; processing different
- Confusion between 'tile' and 'granule'; early revisit times not consistent
- S-2-specific algorithms in early stages of implementation

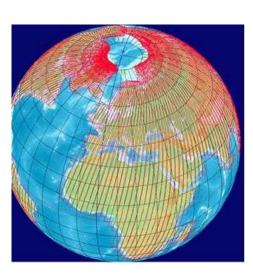


Figure 4: Sentinel-2 Data-Take²

Classification Method: Random Forest

- Random Forests (RF) is an ensemble machine-learning algorithm that grows a 'forest' of decision trees.¹
- RF uses bagging and random feature selection to select data for each tree, and 'votes' on the best decision tree.¹
- Implementation:
 - Data randomly subset 70%
 - 500-tree forest, Vnumber of variables per split, out-of-bag sampling
 - Independent validation with remaining 30% of training data

ides) - s*ee Figure 4* wave infrared

25 km by 23 km tiles

and spatially ance, 100 km by 100 NAP Toolbox irth Explore Google Earth Engine, Sinergise Sentinel Huk

del of Sentinel-2 Satellite. Photograph by Rama, Wikimedia Commons, Cc-by-sa-2.0-fr

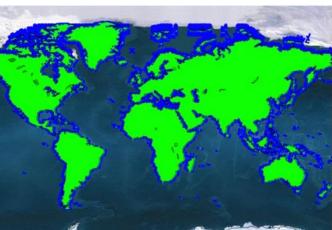


Figure 5: Sentinel-2 Coverage²

3. Results

Results: Classification

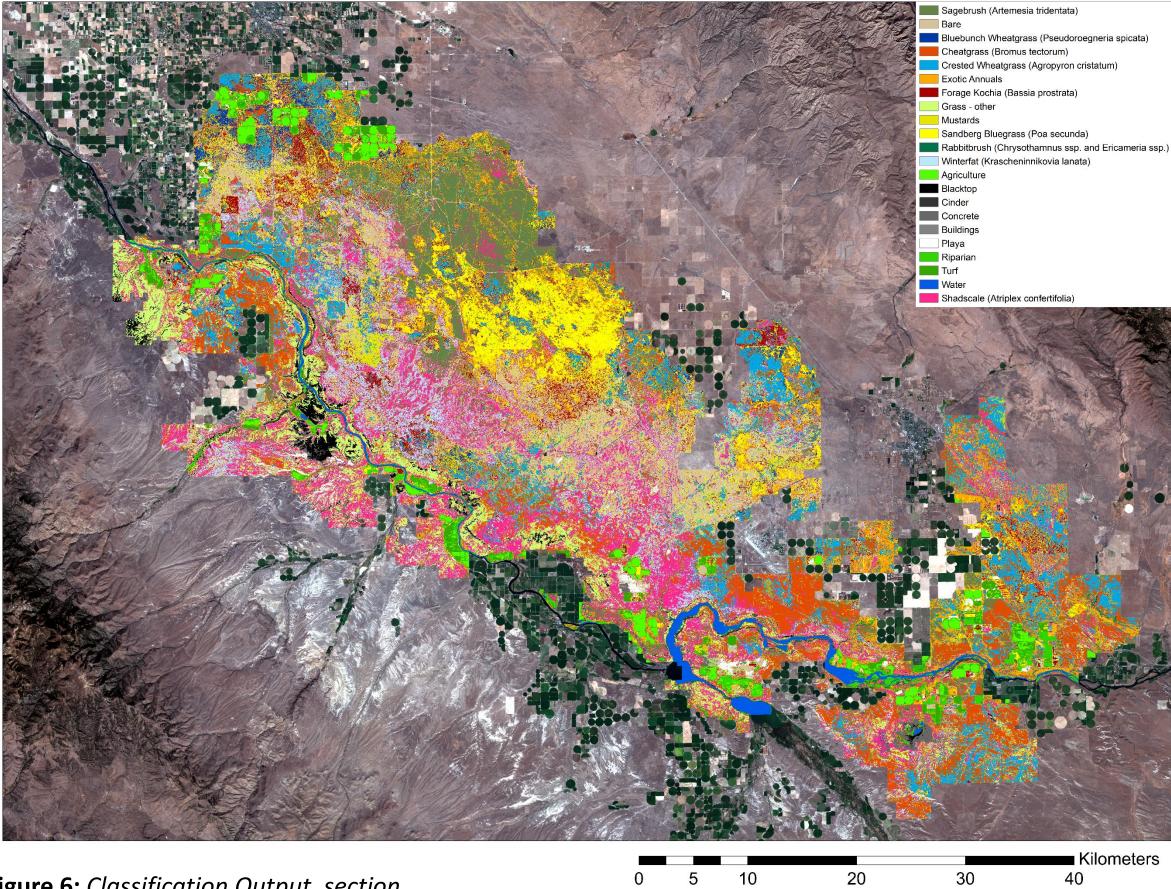


Figure 6: Classification Output, section

4. Conclusions

Take-away Messages

- resolution) and MODIS (higher spatial resolution)
- topics (e.g. dryland vegetation)

 - Study area and date range flexible
 - Can add ancillary data
- phenology between similar species (*Figure 7*)

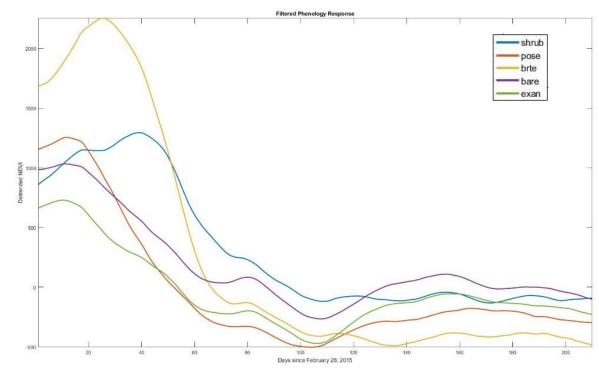


Figure 7: Sample of phenology (by NDVI) from Feb-Sept, courtesy of Megan Gallagher⁴

Acknowledgements

Funding provided by US Army Corps of Engineers, Adaptive Management Monitoring, W9126G-15-2-0030 Thank you to my co-authors, Dr. Roger Rosentreter, and BCAL and Boise State peers and mentors

References

- Breiman, L. (2001). Random Forests. Machine Learning. 45, 5–32

- geospatial analysis for everyone. Remote Sensing of Environment

28,516 km² (10 m × 10 m) pixels \rightarrow 300 million pixels in 1 hour

S-2 offers advantages over Landsat (higher temporal, spatial, and spectral

GEE is efficient for processing, enabling different approaches for difficult

• Classification method easily changed or compared (SVM, CART, etc.)

Multi-temporal imagery and Random Forests leverage differences in

 $Classification / x^{tr} + y^{tr} + y^$

01 02 03 04 06 07 08 09 10 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 8: Confusion Matrix

European Space Agency. https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2 National Aeronautics and Space Administration. *https://landsat.gsfc.nasa.gov/*

Gallagher, M., et al. (2017). Leveraging Google Earth Engine to Couple Landsat and MODIS for Detecting Phenological Changes in Semi-Arid Ecosystems. AGU 2017. Tuesday, 12 December 2017; 13:40 - 18:00. Poster EP23B-1933 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale