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Rapids, MN, United States, 7Battelle, National Ecological Observatory Network Program, Boulder, CO, United States

Assessing functional diversity and its abiotic controls at continuous spatial scales are
crucial to understanding changes in ecosystem processes and services. Semi-arid
ecosystems cover large portions of the global terrestrial surface and provide carbon
cycling, habitat, and biodiversity, among other important ecosystem processes and
services. Yet, the spatial trends and patterns of functional diversity in semi-arid
ecosystems and their abiotic controls are unclear. The objectives of this study are two-
fold. We evaluated the spatial pattern of functional diversity as estimated from small
footprint airborne lidar (ALS) with respect to abiotic controls and fire in a semi-arid
ecosystem. Secondly, we used our results to understand the capabilities of large
footprint spaceborne lidar (GEDI) for future applications to semi-arid ecosystems.
Overall, our findings revealed that functional diversity in this ecosystem is mainly
governed by elevation, soil, and water availability. In burned areas, the ALS data
show a trend of functional recovery with time since fire. With 16 months of data (April
2019-August 2020), GEDI predicted functional traits showed a moderate correlation
(r � 41–61%) with the ALS predicted traits except for the plant area index (PAI) (r � 11%) of
low height vegetation (<5m). We found that the number of GEDI footprints relative to the
size of the fire-disturbed areas (�< 2 km2) limited the ability to estimate the full effects of fire
disturbance. However, the consistency of diversity trends between ALS and GEDI across
our study area demonstrates GEDI’s potential of capturing functional diversity in similar
semi-arid ecosystems. The capability of spaceborne lidar to map trends and patterns of
functional diversity in this semi-arid ecosystem demonstrates its exciting potential to
identify critical biophysical and ecological shifts. Furthermore, opportunities to fuse GEDI
with complementary spaceborne data such as ICESat-2 or the upcoming NASA-ISRO
Synthetic Aperture Radar (NISAR), and fine scale airborne data will allow us to fill gaps
across space and time. For the first time, we have the potential to monitor carbon cycle
dynamics, habitats and biodiversity across the globe in semi-arid ecosystems at fine
vertical scales.

Keywords: airborne laser scanning, GEDI, full-waveform, functional diversity, drylands, abiotic controls, fire
chronosequence, recovery
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INTRODUCTION

Understanding the drivers of ecosystem processes and services at
regional and global scales provide pivotal knowledge to assess
ecosystem responses under changing conditions (Díaz et al., 2007;
Isbell et al., 2015). Functional traits, including morphological,
physiological and phenological characteristics, depict the growth,
reproduction, and survival of individual species and individual
plants (Bu et al., 2019). Further, variations in functional traits are
shown to be linked to environmental conditions and their
fluctuations over time (Schneider et al., 2017). For example,
(Ahrens et al., 2020) demonstrated that functional traits such
as leaf size and specific leaf area show variation with changes in
temperature and precipitation. In addition to climate factors,
other influences including human intervention and pathogens
can alter functional traits and their spatial distribution (Oliva
et al., 2020).

The distribution of functional traits within and between
species of an ecosystem represent the demography, resilience,
and response strategies to disturbance (Díaz et al., 2004; Poorter
and Markesteijn, 2008; Serbin et al., 2019). Therefore, a wealth of
research uses functional trait-based approaches to assess
ecosystem processes and services including productivity,
nutrient cycling and biodiversity (Hooper et al., 2002; Bardgett
and van der Putten, 2014; Violle et al., 2014; Wieczynski et al.,
2019). For example, direct observations of functional traits are
widely utilized at various spatial and temporal scales, mostly in
forested ecosystems, to elucidate overall structure, function, and
diversity (Funk et al., 2017; Wieczynski et al., 2019). In addition,
functional traits have been utilized in assessing community
assembly processes across a variety of traits (e.g., Pakeman
and Stockan, 2014; Medeiros et al., 2019).

Selection of representative functional traits and scaling those
traits are critically important as ecosystem to global scale
processes are a function of combined traits of co-occurring
species and their abundance (Funk et al., 2017). However,
large-scale functional diversity measurements are limited due
to the lack of spatially continuous data sets (Jetz et al., 2016),
where functional diversity is derived from the distribution of
functional trait values at a given spatial grain and extent
(Mouchet et al., 2010). Availability of remotely sensed data at
fine to coarse spatial and temporal scales facilitates upscaling
traits from local to regional and global scales relevant for
ecosystem service management (Abelleira Martinez et al.,
2016; Braun et al., 2018; Schimel, et al., 2013), and functional
leaf traits are now available across biomes in North America
(Wang et al., 2020). Among many, the traits that represent
canopy architecture (morphological functional traits) show
direct relationships between carbon storage (Rödig et al.,
2019), habitat distribution and quality (Bae et al., 2019), and
biodiversity (Bagaram et al., 2018), and are widely used to
characterize regional to global scale ecosystem processes.
Importantly, lidar remote sensing provides opportunities to
accurately estimate the morphological functional traits in
order to map morphological diversity at local and regional
scales (Schneider, et al., 2017; Zheng et al., 2021). With the
launch of the Global Ecosystem Dynamics Investigation

(GEDI) mission, we have new opportunities to map functional
traits and biodiversity at global scales in forest ecosystems
(Marselis et al., 2019; Rödig et al., 2019; Schimel and
Schneider, 2019; Dubayah et al., 2020; Schneider et al., 2020).
Nevertheless, the applicability of GEDI in estimating functional
traits and diversity in semi-arid ecosystems with short and sparse
vegetation is still unknown.

Semi-arid ecosystems cover approximately 40% of the
terrestrial landscape and show large dynamicity in ecosystem
structure and function (Conti and Díaz, 2013). Hence, semi-arid
ecosystems greatly impact global carbon dynamics,
productivity, and habitat quality (Poulter et al., 2015).
Structure-functioning relationships in frequently disturbed
semi-arid ecosystems are unclear, largely due to gaps in
spatially continuous data and the weak response of sparse
and short height vegetation in optical remote sensing
(Kulawardhana et al., 2017; Stavros et al., 2017). In
particular, understanding semi-arid ecosystem responses to
global change is challenging due to the complex and dynamic
interactions among multiple ecosystem functions. Assessing the
spatial patterns of functional diversity and its abiotic controls
are critically important towards unraveling this complexity
(Schlesinger et al., 1990; D´Odorico et al., 2013). Especially,
understanding how community assembly is controlled by the
balance of abiotic drivers is important in predicting the response
of ecosystems to environmental change (Pakeman and Stockan,
2014). Further, functional diversity estimates provide the input
data to help constrain model accuracies of ecosystem processes
at landscape scales in different regions across the globe (Stavros
et al., 2017; Braghiere et al., 2019; Dashti et al., 2021).

In this study, our objectives were to 1) evaluate the spatial
pattern of functional diversity estimated from small footprint
airborne lidar (ALS) with respect to abiotic controls and fire in a
semi-arid ecosystem; and 2) assess GEDI’s potential of capturing
the semi-arid ecosystem diversity at regional scales using GEDI
data from 16 months (April 2019–August 2020) over the same
study area. We selected a range of abiotic controls including
topography, distance to water, topographic wetness index, and
soil. Finally, we explored how disturbance from fire regulates the
functional diversity in this semi-arid ecosystem.

METHODS

Study Area
The study was carried out in the Reynolds Creek Experimental
Watershed (RCEW) in southwest Idaho (Figure 1). The study
area is characterized by a range of topography (1,100–2,200 m)
and vegetation communities. While many varieties of grass, forbs,
and shrubs dominate the low elevations, trees of aspen (Populus
tremuloides), juniper (Juniperus occidentalis), and Douglas fir
(Pseudotsuga menziesii) mark the high elevations. Low stature
sagebrush (Artemisia spp.), bitterbrush (Purshia tridentata), and
grass of varying densities and cover are found throughout RCEW.
In addition, riparian vegetation with cottonwood (Populus
trichocarpa) and willow (Alnus, Ceanothus, and Salix species)
are found within valleys, and mostly along streams across the
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watershed. The study area has experienced prescribed and natural
fires and supports grazing. As a consequence, invasion of
cheatgrass (Bromus tectorum) in native shrub areas and
juniper encroachment have occurred in this study area during
the last few decades.

Field Data
Reference field data were collected at 43 plots at 10 × 10 m
(Figure 1). The plots were selected using a stratified random
sampling approach considering the complicated terrain
conditions. We established 5 transects at 1, 3, 5, 7, and 9 m
in each plot. We collected canopy heights of all the shrubs,
plant area index (PAI) and images at 2 m intervals along each
transect totaling 20 measurements per plot using a ceptometer
(AccuPAR LP-80, Decagon Devices Inc., Pullman, WA, USA)
and a camera (Nikon COOLPIX AW120) respectively. The
ceptometer data provides estimates of PAI following (Norman
and Welles, 1983). Plot scale PAI was estimated by averaging
the 20 measurements (Glenn et al., 2017). The collected images
were analyzed using the “SamplePoint” freeware program to
estimate the species abundance presented within each plot
(v1.59, Booth et al., 2006). Each photo approximately covered
2 m2 on the ground. We placed 100 equally spaced grid
points within each photo and identified the material under
each grid point as vegetation species, dead wood, litter or as
bare ground which were later used to estimate the percent cover
of each material in those plots. Field estimated functional traits

were used to assess the accuracy of ALS estimated functional
traits.

Abiotic Factors
We selected six abiotic factors identified as potential factors
driving the vegetation dynamics in the study area from
previous research (e.g. Seyfried et al., 2018; Seyfried et al.,
2001). They are elevation, slope, aspect, topographic wetness
index (TWI), soil, and distance to water (DTW)
(Supplementary Figure S1). The topographic variables of
altitude, slope, aspect, and topographic wetness index
(TWI) were estimated using the small footprint airborne
lidar derived 3 m digital elevation model. The slope data
were categorized into 10° groups between 0–90°. The aspect
data were categorized into two major directions as north (+/−
90°–180° from south) and south (0°–+/− 90° from south). We
used only north-south aspects as the study area shows
vegetation growth dynamics primarily on these two aspects
(Seyfried et al., 2001). We did not use the flat aspect category as
there were not many pixels in this category due to the complex
topography of the study area. Stream networks and soil
types were retrieved from the Reynolds Creek Critical
Zone Observatory database (GIS Server, Reynolds Creek
Critical Zone Observatory, 2015). Euclidian distance from
perennial and from all streams to each pixel were estimated
and used as the distance to water (DTW). We did not use
climate data such as precipitation or temperature as the local

FIGURE 1 | Reynolds Creek Experimental Watershed, Idaho, USA, with topographic gradient and stream network. The black stars represent 10 × 10 m field plots
across the watershed.
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distribution of these two variables within the study area is
primarily controlled by elevation and aspect (Seyfried et al.,
2018).

Airborne Lidar Data
Small-footprint waveform lidar data were acquired August 2014
using the NASA Airborne Snow Observatory (ASO) (Riegl, 2017)
(RIEGL Laser Measurement Systems GmbH, Horn, Austria) dual
laser scanner (wavelength � 1,064 nm, outgoing pulse width � 3
ns). The study area was scanned at a pulse repetition rate of
400 kHz per laser and the backscattered signal was sampled at 1
ns interval. All the lidar waveforms in each flight line were
Gaussian decomposed following the workflow of (Ilangakoon
et al., 2018). We estimated spatial coordinates, incident angle,
pulse width, amplitude, and scattering cross section of all echoes
in each waveform. The resulting average point density across the
watershed was 10–14 pts/m2 with positional accuracies of 0.14 m
in vertical and 0.11 m in horizontal directions. The vertical and
horizontal positional accuracies were assessed using TerraScan
software.

ALS Functional Traits
The point cloud resulting from the waveform Gaussian
decomposition was used to estimate the ALS based plant
functional traits. Finding the bare ground is critical yet
challenging as the low-stature vegetation in the study area
tends to widen the waveform without a separate vegetation
pulse. We used a pulse width threshold (3.2 ns) to separate
bare ground from vegetation based on (Ilangakoon et al.,
2018). Then, all lidar returns were height normalized using the
ground plane and were aggregated into 10 × 10 m spatial pixels. A
spatial resolution similar to the field plot size was used to
accommodate both trees and shrubs while also allowing us to
identify small variations of functional diversity in shrub-
dominated areas. Canopy height is the maximum height from

all above ground returns from each 10 × 10 m pixel area. PAI was
estimated as,

PAI(θ) � LΩ(θ) � − ln(P(θ))cosθ
G(θ)

where, P(θ) and G(θ) are the gap fraction at incident angle θ and
projection function, respectively (Zheng et al., 2016). Ω is the
clumping index and L is the true leaf area index (Norman and
Campbell, 1989). The gap fraction was estimated as,

P(θ) � ∑ σg ,θ

∑ σall,θ

where σg is the scattering cross sections from ground returns and
σall is the scattering cross sections from all returns at a given
angle. Vegetation sparseness of the study area resulted in very
similar spectral signatures for both the bare ground and the
canopy (Dashti et al., 2019). We did not correct the PAI for
canopy and ground reflectance. Estimates of the scattering cross
section from small footprint waveform lidar are explained in
Wagner (2010) and Ilangakoon et al. (2018). We predicted the
foliage height diversity (FHD) at plot resolution (10 × 10 m). We
used plot scale LAI profiles developed only from the above
ground point cloud. The above ground lidar points were
fragmented into 20 cm layers. The 20 cm layer thickness was
used given that it is approximately 2 times the point cloud vertical
uncertainty. For each layer, the ratio between numbers of points
in each layer to the total number of points was calculated. The
total foliage height diversity was then estimated using the
following equation (MacArthur and MacArthur 1961).

FHD � −∑ pi . ln pi

where, pi is the fraction of foliage in ith canopy layer.
Once the three traits were estimated at 10 × 10 m pixel

resolution for the whole study area, the trait values were

FIGURE 2 |Correlation between (A) field and ALS estimated canopy height canopy heights, (B) field and ALS estimated plant area index (PAI). The solid green lines
represent the best fit line while the gray areas are the 95% confidence interval. The dashed red line represents the 1:1 line.
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normalized to vary between 0 and 1 following (Schneider et al.,
2017).

Functional Diversity
We used three morphological traits (CH, PAI, and FHD) to
estimate measures of functional diversity for the study area. We
selected CH, PAI, and FHD as they can be directly estimated from
both discrete return and waveform lidar and are widely used to
represent a range of plant and ecosystem functions (e.g. canopy
architecture, ecosystem productivity, habitat quality). We
estimated three functional diversity indices: richness,
divergence, and evenness, combining the above mentioned
three morphological traits. Functional diversity indices were
calculated around each sample unit (AKA each ALS pixel)
across the watershed. To calculate functional diversity around
each ALS pixel, we selected a square neighborhood with a side
length of 1,000 m. This spatial neighborhood was selected in
order to include at least 10 GEDI footprints within each
neighborhood and to be compatible with GEDI raster
products (Dubayah et al., 2020). The distribution of PAI, CH,
and FHD values of all the pixels within the 1,000 m square
neighborhood was then analyzed to derive the functional
diversity indices following the below equations from (Villéger
et al., 2008; Schneider et al., 2017).

In this study, we describe functional diversity as a 3-D trait
space where the axes are represented by the three functional traits.
However, functional diversity can be represented as a
multidimensional trait space based on the number of traits
used to estimate the diversity indices (Villéger et al., 2008,
Schneider et al.,2017). The values of functional diversity
indices are then calculated based on the relative distribution of
functional traits values extracted from each 1000 m spatial
neighborhood (Supplementary Figure S2). The functional
richness is the convex hull volume covered by the PAI, CH,
and FHD of the pixels within the selected neighborhood mapped
in the 3-D trait space. Functional divergence (Fdiv) is
estimated as:

Δ|d| � ∑
S

i�1

1
S

∣∣∣∣dGi − dG
∣∣∣∣ (Schneider et al., 2017),

FDiv � dG

Δ|d| + dG
(Schneider et al., 2017),

where, S is the number of pixels used to map the functional
divergence, dGi is the Euclidean distance between the ith pixel
and the centre of gravity of 3D trait space defined by CH, FHD,
and PAI as trait axes, and dG is the mean distance of all pixels to
the center of gravity (Supplementary Figure S2B). The
estimation of Functional evenness (FEve) requires partial
weighted evenness (PEW) measurements. The Euclidian
distance between nodes was estimated using the minimum
spanning tree method in MATLAB (Prim, 1957). In this
study, a node is a pixel defined in the 3D trait space by its
PAI, FHD, and CH trait axes. The minimum spanning tree was
drawn connecting all the pixels in the functional space using the
minimum possible total edge weight.

PEWi � EWl

∑S−1
i�1 EWl

FEve � ∑S−1
l�1 min(PEWl , 1

S−1) − 1
S−1

1 − 1
S−1

where, EWl is the Euclidian distance of branch l in the minimum
spanning tree, and S-1 is the number of branches. Here, S is the
number of pixels used and the subscript i represents the 1,000 m
square neighborhood space used to estimate the functional
diversity (Supplementary Figure S2C).

The resulting values were assigned as the center pixel
functional diversity to generate a seamless functional diversity
map of the study area.

Statistical Analysis
We first investigated the correlation among functional diversity
indices estimated fromALS and the abiotic factors. To analyze the
effects of abiotic factors on functional diversity, we randomly
selected 200 data points across the watershed covering the full
range of functional diversity and the abiotic factors. We
resampled the environmental factors (elevation, slope, aspect,
topographic wetness index, distance to the nearest stream, and
soil type) to the same 1,000 m spatial resolution of the functional
diversity. We used the average of the continuous values (e.g.
elevation). For categorical variables (e.g. soil type), we converted
them into dummy variables and used the major category within
each 1,000 m space. We set the minimum distance between data
points greater than 1,020 m to avoid the mutual inclusion of niche
spaces. A Gaussian generalized linear model with an identity link
function was applied to the scaled continuous and dummy
categorical variables with the diversity indices as the response
variable to evaluate the effects of abiotic factors on functional
diversity. The relative importance of each factor in the linear
model was used (R package relaimpo, calc. relimp) to assess the
capability of all factors together and each factor separately to
explain the variance of each diversity index estimated from ALS
and GEDI.

Functional Diversity Shift Under Fire
Disturbance
To study how fire may shift the functional diversity, we applied a
“space for time” approach to four different fires distributed across
the study area. These are the Koke (natural fire, 2014), Whiskey
mountain (prescribed fire, 2005), Break (prescribed fire, 2002)
and Rabbit creek (natural fire, 1996). The burned areas varied
from 0.5 to 2 km2. To assess the disturbance driven diversity shift,
we generated circular buffer zones with 500 m distance in the
unburned areas around each fire. The functional traits and
diversity values of all the ALS pixels within each burned area
and their surrounding unburned areas were then extracted. Trait
and diversity indices of each burned pixel and the means of
undisturbed values from each fire were used to predict the percent
recovery. The resultant percent trait and diversity within the fires
and the original traits and diversity values from the undisturbed
areas were separately fitted with non-linear functions (Gompertz,
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polynomial, and Chapman-Richards) and the best fit models were
used to interpret the post-fire recovery trajectory. Given the
limited number of fires in the study area, we did not evaluate
other potential factors for fire recovery rates (e.g. impact of
environmental gradient on fire recovery rate). To understand
the marginal spatial neighborhood size that can show the
disturbance driven diversity shifts, we estimated the functional
diversity with varying spatial neighborhood sizes (30–500 m).

GEDI Data and Functional Traits
To evaluate the potential of GEDI data to capture functional
diversity in semi-aid ecosystems, we used GEDI 1B (v001), GEDI
2A (v001) and GEDI 2B (v001) data between April 2019 to
August 2020. Data were downloaded from the Land Processes
Distributed Active Archive Center (LP DAAC) using the GEDI
finder tool (https://lpdaacsvc.cr.usgs.gov/services/gedifinder). In
this study, we used GEDI footprints with a quality flag of 1
(Sensitivity >0.90). Horizontal geolocation accuracy of the first
version GEDI data are approximately 20 m. As this may greatly
impact our results, using the correlation matching algorithm
(Blair and Hofton 1999) implemented in the GEDI simulator
(Hancock et al., 2019) and the ALS point cloud data, we geo-
corrected the GEDI data before estimating the functional
diversity indices. The GEDI simulator simulates GEDI-like
waveforms using the ALS point cloud and compares them
with the real GEDI waveforms within a given horizontal
region (∼20 m in this case). The location that has the highest
correlation between the simulated and the real GEDI waveform
provides the offset of the real GEDI waveform. After geo-
correction, we extracted functional traits that resembles the
same functional traits we derived from ALS data. The RH98
metric from the GEDI 2A product was used as the canopy height.
LAI and FHD from the GEDI 2B product were used as the PAI
and FHD, respectively, in this research. We used GEDI 2A and 2B
products based on the default waveform processing algorithm
setting. In addition, several other parameters (beam and
sensitivity) were extracted to evaluate the factors affecting the
accuracy of GEDI estimated functional traits. In this study, we
used ALS based ground slope, ALS estimated vegetation height,
ALS estimated cover, and GEDI beam (power vs coverage) and
sensitivity as factors that may affect the retrieval of GEDI
functional traits following (Liu et al., 2021). A relative
importance matrix from a random forest regression model was
used to assess the impact of the above-mentioned factors on
GEDI functional traits retrievals. Given the limited number of
field samples that overlap with the real GEDI footprints, we used
ALS data as the reference data to assess the accuracy of GEDI
predicted functional traits.

RESULTS

ALS Derived Functional Traits
Our field observations showed a range of functional trait values
for PAI (0.19–1.88) and CH (0.31 m–2.52) with mean values of
0.76 and 1.20 m, respectively. Figures 2A,B show the correlation
between the functional traits estimated from 10 × 10 m field plots

and traits predicted from ALS point clouds within the field plots.
Field observed functional traits show a strong correlation (r �
71–88%) with ALS derived functional traits. However, the ALS
underestimates the field observed vegetation heights and
overestimates the PAI estimates. The ALS height
underestimation is compatible with previous ALS predicted
heights in similar study areas (Streutker and Glenn, 2006;
Mitchell et al., 2011). This ALS height underestimation could
be due to the uncertainty in bare ground detection (Glenn et al.,
2011). The PAI overestimation could be due to reflectance
similarities between the canopy and bare ground.

Environmental Controls of Functional
Diversity
ALS estimated functional richness values ranged between
0.0–0.11 (Figure 3A). The evenness and divergence show
relatively larger values compared to the richness. The ALS
evenness and divergence range between 0.31–0.99 and
0.55–0.86 (Figures 3B,C), correspondingly. The dense tree-
dominant southern portion of the study area is characterized
by large richness and small evenness values whereas the shrub-
dominant central and northern portions of the watershed are
characterized by the opposite. Evenness and richness differentiate
the tree-shrub ecotones and relative densities within shrub
dominant areas. A variable functional divergence is observed
throughout the watershed (Figure 3C).

The trends in functional diversity indices with abiotic factors
are shown in Figure 4. Functional richness slightly decreases with
an increase in elevation until 1,600 m and then has a rapid
increase with increased elevation (Figure 4A). The ALS
predicted functional richness increases from south to north
aspects (Figure 4B). ALS predicted functional evenness values
decrease with a change from south to north aspects. In contrast,
functional evenness values increase when the distance to water
increases. There was no trend observed when we considered both
perennial and ephemeral streams together to estimate the
distance to water. Among all environmental factors studied,
distance to water is the only factor that shows a trend with
functional divergence predicted from the ALS data. This trend is
generally positive, with functional divergence increasing with an
increase in distance to water, especially at higher elevations
(Figure 4F).

Functional Diversity in Fire Disturbed Areas
We analysed ALS functional traits and diversity indices over
selected burned and unburned areas to infer the fire resilience of
the study area. We used a fire chronosequence spanning
1996–2014 to understand if there are shifts of post-fire traits
and diversity through vegetation recovery. One way ANOVA
indicated that all burned and unburned groups are significantly
different (95% confidence level) (Supplementary Figure S3).
Based on the tested models, a 2nd order polynomial function
provided the best fit and is used hereafter to describe the post-fire
recovery. Based on ALS data, CH shows an initial decrease
followed by an increase towards the undisturbed state (100%
recovery state) (Figure 5A). PAI and FHD show a faster recovery
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FIGURE 3 | Functional diversity mapped using a 1,000 m spatial neighborhood from ALS predicted functional traits. (A) Functional richness (ALS FRic), (B)
Functional evenness (ALS FEve), and (C) Functional divergence (ALS FDiv).

FIGURE 4 | Trends between ALS predicted functional diversity and abiotic controls. The red curves represent the mean variation of diversity indices predicted from
ALS and the surrounding gray area represents the standard deviation. Functional richness with (A) elevation; (B) aspect. Functional evenness with (C) elevation; (D)
aspect; (E) distance to water. Functional divergence with (F) distance to water.
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to the undisturbed state (∼18 years post-fire); however, CH does
not reach the undisturbed state during the study period. Though
functional richness increased initially, a drastic decrease is
demonstrated ∼9 years post-fire. In contrast, functional
evenness continuously increases (Figure 5E). This post-fire
increase in functional evenness indicates that fire may changes
the state of the ecosystem driving it to a more functionally even
ecosystem. Functional divergence shows a similar behaviour to
functional richness (Figure 5F).

We further estimated the functional diversity of the four fires
at a range of spatial neighbourhood sizes with 30 m increments
using ALS predicted functional indices (Supplementary Figure
S4). To calculate functional diversity, three or more
measurements from each functional trait are considered. The
minimum neighbourhood of 30 m was selected as it is 3 times
bigger than the ALS pixel size. By selecting a square
neighbourhood, we were constrained to 30 m being the
minimum we could use. After the minimum neighbourhood
was selected, the increment can be any size. We used 30 m
intervals. At smaller neighbourhoods, functional richness from

disturbed and undisturbed areas cannot be differentiated
(Supplementary Figure S4). Functional richness values and
their uncertainty increases with an increase in the spatial
neighbourhood size. On the contrary, at smaller
neighbourhoods, the differences in functional evenness and
divergence between disturbed and undisturbed areas are
clearly visible. These differences gradually diminish with an
increase in the spatial neighbourhood (∼270 m)
(Supplementary Figure S4). The uncertainty of functional
evenness and divergence estimates also decrease when the
spatial neighbourhood size increases. The results further
indicated that functional diversity values resulted from each
selected neighbourhood are significantly different
(Supplementary Figures S6–S8).

GEDI Predicted Functional Traits in a
Semi-Arid Ecosystem
Our random forest regression based relative importance values
show that ground slope is the most important error factor for

FIGURE 5 | Percent recovery of functional traits (A–C) and diversity (D–F) across the fire chronosequence (1996–2014) predicted from ALS data. The box plots
represent the percent recovery data distribution within a given year. The black line and blue shaded area represent the mean percent recovery and 95% confidence
interval of functional trait/diversity post-fire, respectively. The box plots show the raw data (functional traits and diversity) distribution extracted from burned areas colored
based on time since fire.

Frontiers in Remote Sensing | www.frontiersin.org November 2021 | Volume 2 | Article 7433208

Ilangakoon et al. Functional Diversity in Drylands

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


all three GEDI based functional trait estimates (Figure 6). In
addition, ALS estimated canopy cover and canopy height
influenced the GEDI trait retrievals. The ground slope
varied between 0 and >60° in our study area. Due to this
known influence of ground slope on large footprint lidar
backscatter waveforms (Silva et al., 2018; Dong et al., 2019),
we further investigated how GEDI predicted functional traits
vary with ground slope. The distribution of ALS and GEDI
estimated functional traits with slope are displayed in
Supplementary Figure S9. The results indicate that GEDI
predicted canopy height (r � 26%) and FHD (r � 51%) show a
positive correlation with ground slope. This moderately strong
correlation of FHD with slope could be mainly due to the
shorter heights of the vegetation (<5 m) where the ground and
vegetation signals likely be in mixed. We expect this slope-
FHD correlation to be smaller in areas with taller vegetation.
Based on our study and other related studies (Schneider et al.,
2020; Liu et al., 2021), we used GEDI data only from areas with
slopes less than 20° for the analysis hereafter.

To compare GEDI functional traits with those predicted
from ALS, we used the same surface coverage for both ALS and
GEDI (25 m). We used the GEDI simulator based geo-
correction results to find overlapping ALS and GEDI

footprints. We then estimated ALS functional traits at 25 m
spatial resolution from those best matched ALS point clouds.
GEDI functional traits show low to moderate correlation (r �
11–61%) with ALS predicted functional traits (Figure 7). Our
results indicate that GEDI data have difficulty estimating
vegetation heights less than 2 m (red circle in Figure 7A).
Further, GEDI data overestimate FHD (RMSE � 2.45), canopy
heights (RMSE � 4.69 m) and the PAI (RMSE � 1.97) in this
study area. This overestimation can be attributed to its large
pulse length relative to the shorter vegetation heights in this
area. In addition, the differences in the algorithms used to
estimate the functional traits from the two laser systems (ALS
and GEDI) may further cause these overestimations.

GEDI Predicted Functional Diversity in a
Semi-Arid Ecosystem
GEDI shows small functional richness values, ranging between
0.001–0.07 (Figure 8A). The evenness and divergence show
relatively larger values compared to the richness. The GEDI
evenness vary between 0.55 and 0.86 (Figures 8B,C). As in
ALS diversity maps, GEDI evenness and richness differentiate
the tree-shrub ecotones and relative densities within shrub

FIGURE 6 | Relative importance measured as percent increase in mean standard error (%IncMSE) of error factors in functional trait retrievals from GEDI. Variables
with larger (%IncMSE) values are more important. (A) GEDI estimated canopy height (CH); (B) GEDI estimated plant area index (PAI), and (C) GEDI estimated foliage
height diversity (FHD).

FIGURE 7 | Relationship between ALS and GEDI predicted functional traits, including: (A) canopy height, (B) plant area index (PAI), and (C) foliage height diversity
(FHD). The solid lines represent the best fit line while the gray areas are the 95% confidence interval. The red ellipse represents vegetation heights less than 2 m.
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dominant areas. Compared to ALS functional divergence,
discrete high functional divergence patches are observed
throughout the watershed (Figure 8C). The correlation
between ALS and GEDI predicted functional richness,
functional evenness, and functional divergence are 24, 20
and 5%, respectively (Figures 8D,E). In addition, functional
richness predicted from both ALS and GEDI show consistent
inverse correlation (∼60%) with their respective functional
evenness (Supplementary Figure S10). Though we observed
moderate correlations between GEDI and ALS predicted
functional traits (CH and FHD), these low correlations of
functional diversity could be mainly due to the sparseness of
GEDI footprints within each 1,000 m spatial neighbourhood
(∼20–100 footprints compared to ∼1,600 pixels from ALS).

However, there are consistent trends between ALS and GEDI
diversity with abiotic factors. As in ALS, functional richness

slightly decreases with an increase in elevation until 1,600 m and
then has a rapid increase with increased elevation (Figure 9A).
The GEDI predicted functional richness shows an initial
decrease on south aspects and an increase on north aspects
(Figure 9B). The functional evenness shows a consistent trend
with both the ALS and GEDI data (Figure 9C). The GEDI
predicted functional evenness values decrease with a change
from south to north aspects. The GEDI functional evenness and
divergence resulted in with similar patterns as observed with
ALS predicted evenness and divergence respectively
(Figure 9F).

Due to the limited coverage of GEDI data (April 2019-
August 2020), we did not have enough (>10) GEDI
footprints over the burned areas to evaluate the post-fire
functional shifts at GEDI scale in this semi-arid ecosystem.
However, we emphasize the importance of such a study with

FIGURE 8 | Functional diversity mapped using a 1,000 m spatial neighborhood GEDI data and their correlation with ALS derived functional diversity indices. Top
row: GEDI predicted (A) functional richness (GEDI FRic), (B) Functional evenness (GEDI FEve), (C) Functional divergence (GEDI FDiv). Bottom row: Correlation between
(D) ALS functional richness (ALS FRic) and GEDI predicted functional richness (GEDI FRic), (E) ALS functional evenness (ALS FEve) and GEDI predicted functional
evenness (GEDI FEve), (F) ALS functional divergence (ALS FDiv) and GEDI predicted functional divergence (GEDI FDiv).
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appropriate GEDI coverage (two or potentially more years of
data collection) in the future, as the GEDI mission aims to
address global biodiversity and habitat change, which are
directly related to the functional diversity.

DISCUSSION

ALSBased Functional Diversity in Semi-Arid
Ecosystems
Our results emphasize that the relative distribution of elevation,
soil, distance to water, and aspect control the trends and patterns
of functional diversity in this ecosystem. Functional richness is
the niche extent in the trait space. We observed large functional
richness at high elevations, especially in the southern portion of
the study area. This region receives the highest precipitation
throughout the year, mostly as snow, which helps maintain
perennial streamflow (Harrison et al., 2020). The major soil
type is the Harmehl-Gabica association characterized by deep
soil profiles, thick surficial A horizons, and high organic matter
on north facing slopes (Seyfried et al., 2000). Due to the
availability of water, soil nutrients, and solar radiation, high

elevation areas provide favorable conditions for conifers, aspen
and mountain sagebrush and these species have diverse
morphological characteristics. The diverse topographic
gradients over short distances limits the spatial extension of
this functionally rich zone. Hence, the vegetation in the
southern portion of the study area may have higher
competition for resources leading to a lower overall functional
evenness. In addition, this region shows a mean annual
temperature range from 4–16°C providing favorable conditions
for vegetation growth. Due to a strong dependency with elevation,
we did not include precipitation or temperature as abiotic factors.
Future studies including these climatic variables and their
temporal variability will help us understand the temporal and
spatial dynamics of functional diversity. Contrary to this study, a
decrease in functional richness at high elevations due to increases
in aridity and decreases in temperatures have been observed in
several other studies (Schneider et al., 2017; Durán et al., 2019;
Wieczynski et al., 2019).

In contrast, the lower elevations in the central and north
portions of the study area are relatively dry with lower and
intermittent precipitation. The northern watershed consists of
shallow, rocky soils with mesic soil temperatures favoring

FIGURE 9 | Trends between functional diversity and abiotic controls. The red and blue curves represent the mean variation of diversity indices predicted from ALS
and GEDI data, respectively, and the surrounding gray area represents the standard deviation. Functional richness with (A) elevation; (B) aspect. Functional evenness
with (C) elevation; (D) aspect; (E) distance to water. Functional divergence with (F) distance to water.
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sagebrush species. This unique and important plant community
in the northern Great Basin ecoregion is referred to as the
sagebrush-steppe and is co-dominated by big sagebrush and
several perennial grasses and forbs. The functional evenness is
the distribution of trait abundance in the occupied niche space.
Our functional trait maps show that variability in traits in these
regions is minimal. Rather than the abundance, the distribution
of structurally similar vegetation in the niche space is reflected by
the evenness. This further explains the negative correlation
between functional richness and evenness. Sparsely distributed,
structurally similar shrubs can effectively utilize the entire range
of resources available. Hence, we observe functionally even, but
functionally less-rich landscapes in the lower elevations of the
study area. This low functional richness may also be a reflection of
environmental tolerance (beta niches) to disturbance such as
grazing (Tilman and Downing 1994). In contrast, the water
availability along perennial streams favors the growth of dense,
structurally variable riparian vegetation contributing to a
relatively low functional evenness. Our results of this increased
plant diversity with wetter environmental conditions in water
limited environments are confirmed by Harrison et al. (2020).
This soil and elevation dependency in functional richness and

evenness in this study area are further confirmed by our
generalized linear models and are consistent with both ALS
and GEDI (Figure 10 A, B, D, and E and Supplementary
Figure S10).

Remotely sensed functional diversity indicates how the niche
is grouped in trait space. Though we observe similar
morphological traits at lower elevation and diverse
morphological traits at higher elevations, the local grouping or
the patchiness of the vegetation is mainly governed by the soils.
Our relative importance values resulting from generalized linear
models also confirmed elevation, soil, and distance to water as
important for functional divergence (Figures 10C, F). The less
relative importance of distance to water with the GEDI predicted
data could be due to sparseness of the GEDI footprints across the
watershed. In addition, water availability provides the necessary
wetness for vegetation to grow and survive. Hence, different
densities of vegetation can be observed in the trait space
leading to dynamic divergence characteristics in the study
area, in all ecotones. This explains why the functional
divergence shows a trend only with distance to water. The
variable functional diversity in the study area may resemble
the maximum use of available resources. Overall, this study

FIGURE 10 |Relative importance of each abiotic factor from generalized linear models that explain the variability of diversity indices. Diversity indices estimated from
ALS (A–C) and derived from GEDI (D–F).
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shows that both the fine resolution airborne lidar can predict
functional richness, evenness and divergence of the semi-arid
study area and the functional diversity in this study area is mainly
driven by the elevation, soil, and water availability.

Functional Diversity Shifts Under
Disturbance
Disturbance and time-since-disturbance show a significant
influence on driving the functional diversity in the study area.
Further, the functional diversity in the fire regions is highly
dependent on the spatial neighborhood size as well as the size
of fire. While we did not have enough GEDI footprints to
characterize the relatively small fires, our GEDI simulations
indicate that after 2 years of the mission, GEDI coverage is
likely to be sufficient (Ilangakoon, 2020). Similar functional
richness over disturbed and undisturbed areas from ALS data
may be due to standing dead or burned wood in the disturbed
area. Integrating other remote sensing techniques that can
differentiate woody materials from leafy vegetation could
resolve this (e.g. Li et al., 2018). However, the increase of
functional richness of both disturbed and undisturbed areas
with the expansion of neighborhood size is due to the
potential merging of different traits associations. Larger
neighborhood sizes include areas outside of the burn.
However, this analysis provides a change in functional
diversity compared to purely unburned areas. This helps to
understand if an area has undergone a disturbance even if the
neighborhood size is bigger than the size of disturbance. This can
be especially helpful when using coarse spatial resolution data
where the burned areas are only represented by a few pixels (e.g.
wall to wall data from MODIS).

All three functional traits and diversity indices show a clear
separation between disturbed and undisturbed areas. The
differences disappear at large spatial extents though, where
functional evenness and divergence of burned and unburned
areas converge. This convergence emphasizes the importance of
using fine resolution remote sensing data such as ALS to
estimate fine-scale disturbance effects. At global scales, this
could be potentially accomplished fusing GEDI data with
ICESat-2 and Synthetic Aperture Radar (SAR), including the
upcoming NISAR (Bae et al., 2019; Qi and Dubayah, 2016,
2019). Though functional richness and divergence show
relatively lower values immediately post-fire compared to the
undisturbed areas, functional evenness increases immediately
after fire. Disturbance results in a functionally different and
disconnected landscape from its surrounding. The rate of
recovery largely affects native habitat, especially for sage
grouse (a threatened species), and potential changes in
ecosystem processes. The ideal habitat for sage grouse
requires connected mosaics of sagebrush steppe, which allow
them safe migration, secure shelter, and food resources (Stiver
et al., 2015). In addition, disturbance-driven fragmentation
strongly affects biodiversity and resource distributions (e.g.
ecological functions and processes), especially along edges of
the disturbance (Collinge, 1996). Recovery from disturbance in
the face of global change represents a substantial challenge to

agencies that manage these lands. Our study shows that
assessing functional diversity can help identify areas for
restoration or other management activities to consider for
treatment.

Stability and post-disturbance recovery of individual species
and the community are important components of resilience to
disturbance. For example, ecological resilience, an important
aspect used to understand ecosystem resilience, is the estimate
of post-disturbance vegetation structure recovery (Cole et al.,
2014). The resilience of this ecosystem to wildfire thus can be
gauged by the rate at which the vegetation recovers in structure
and diversity. Our results show that this ecosystem recovers to
its background state within 10–15 years, both in terms of
functional traits and their diversity (except FHD). The fire
return interval of sagebrush-dominated ecosystems can vary
from decades to centuries (Baker, 2006; Heyerdahl et al., 2006;
Mensing et al., 2006) though the invasion of non-native grass
like cheatgrass can shorten fire return intervals (Balch et al.,
2013). Based on historic research and our findings, the study
area is likely in a stable and resilient state to wildfires. However,
with increasing fire size, frequency, and severity, and non-
native grass invasion in the western US, this ecosystemmay also
take an alternative unstable state. Our results further emphasize
the unprecedented opportunities to characterize ecosystem
resilience in addition to vegetation structure to assess
wildfire impacts on ecosystems across spatially continuous
scales.

GEDI in Semi-Arid Ecosystems
Functional traits and their diversity in an ecosystem can indicate
resource availability and response mechanisms to environmental
perturbations such as fires. The potential of GEDI to predict
functional traits and diversity of semi-arid ecosystems thus has
important global implications. While the correlation between
GEDI and ALS estimates of canopy height and FHD confirmed
the potential of GEDI in these heterogeneous semi-arid
ecosystems, the poor correlation with ALS predicted PAI
emphasized the need to further investigate GEDI’s feasibility
in low-height vegetation environments with full GEDI
coverage. Our study area mainly consists of short shrubs and
grass (<5 m) where vegetation return is likely to be mixed in with
the ground return. These mixed signals may incorrectly classify
vegetation as ground leading to this PAI underestimate. We
expect stronger correlation between ALS and GEDI predicted
PAI in biomes where there is a clear inflection point between the
ground and canopy (in areas where vegetation is taller than 5 m).
However, the correlations of field estimated functional traits with
those estimated from both the ALS and simulated GEDI data
(Ilangakoon, 2020) provide a baseline to understand GEDI’s
feasibility and challenges to track trends and patterns of
functional traits at regional and global scales in similar
ecosystems. In this study, we used real GEDI data with the
default algorithm setting for vegetation metric calculations.
Our findings may improve by implementing algorithms
optimized for the study area, correcting for known differences
between the two instruments (e.g., pulse widths of GEDI �
15.6 ns, ALS � 3 ns), and with additional GEDI coverage over
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time. In addition, correction of ALS functional trait estimates for
the reflectance differences between the bare ground and the
canopy of different plant functional types may help to
constrain the ALS predicted PAI overestimation compared to
the field estimates, as well as GEDI estimates. GEDI data version 1
used a default global reflectance ratio (1.5) between the canopy
and bare ground while we considered a value of 1 in the ALS
estimates due to the observed similarity between the spectral
signatures of the ground and the canopy of the dominant plant
functional type (shrub). However, the study area also has grass
and trees which can cause the ratio of canopy and ground
reflectance to vary accordingly. Though we used the LAI
profile estimated from the ALS and GEDI data to calculate
FHD, the vertical resolution we used for ALS-FHD estimate is
0.20 m whereas it is 5 m for GEDI-FHD estimates (Tang and
Armston, 2019). We used 0.20 m layers from the ALS point cloud
in order to capture fine-scale variation of FHD and to evaluate
GEDI’s feasibility in this ecosystem. The differences in vertical
resolution and reflectance ratios between the two datasets may
help explain the low to moderate correlation and uncertainties
between the ALS and GEDI trait predictions. Derivation of
FHD at higher vertical resolution using original georeferenced
GEDI waveforms (GEDI 1B product) may provide better FHD
values for these types of low height vegetation environments.
Further, we observed approximately 48% of GEDI footprints in
this study area are on slopes >20° and these slopes influence our
GEDI based trait estimates. Future investigations may choose to
utilize a slope adaptive method to correct for the influence of the
ground slope in waveform lidar predicted metrics as explained in
Wang et al. (2019) or applying a physical slope correction (Park
et al., 2014).

While 16 months of GEDI sampling is not sufficient to provide
a comprehensive description of the disturbance, GEDI’s
capability of estimating functional traits (CH and FHD) in this
semi-arid ecosystem demonstrates its exciting potential to
identify critical biophysical and ecological shifts. Footprint-
based GEDI functional diversity estimates showed consistent
trends with abiotic factors as with ALS data. Though the
sparseness of GEDI footprints (∼20–100 footprints within a
1 km2 area) limited our ability to map functional diversity
at local and regional scales, this could be potentially
accomplished fusing GEDI data with ICESat-2 and Synthetic
Aperture Radar (SAR), including the upcoming NISAR (Bae
et al., 2019; Qi and Dubayah, 2016; Qi et al., 2019). This
information will help us understand the potential of GEDI to
monitor the changes in carbon-cycle dynamics, habitats and
biodiversity across the globe in semi-arid ecosystems. The
errors in GEDI predicted functional traits in a semi-arid
ecosystem such as our study area will result in errors of
secondary products such as functional diversity, biomass, and
carbon stocks. Hence, it is important to identify methods and

algorithms with properly documented workflows appropriate for
the ecosystem, such as our efforts here with functional traits.
Ultimately, this study highlights the capabilities and
opportunities for further research and refinement in order to
utilize GEDI for global scale estimates of biomass, carbon, and
biodiversity.
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