13 research outputs found

    Rapid Dissemination of SIV Follows Multisite Entry after Rectal Inoculation

    Get PDF
    Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum

    Histidylated polylysine as a synthetic vector for gene transfer into immortalized cystic fibrosis airway surface and airway gland serous cells

    No full text
    International audienceWe recently designed a cationic polymer called histidylated polylysine made of polylysine partially substituted with histidyl residues which become protonated at slightly acidic pH. This polymer is thought to induce the leakage of acidic vesicles containing plasmid/histidylated polylysine complexes

    Efficient Gene Transfer into Human Normal and Cystic Fibrosis Tracheal Gland Serous Cells with Synthetic Vectors

    No full text
    International audienceSubmucosal gland serous cells are believed to play a major role in the physiopathology of cystic fibrosis (CF) and may represent an important target for CF gene therapy. We have studied the efficiency of reporter gene transfer into immortalized normal (MM-39) and CF (CF-KM4) human airway epithelial gland serous cells using various synthetic vectors: glycosylated polylysines (glycofectins), polyethylenimine (PEI) (25 and 800 kD), lipofectin, and lipofectAMINE. In both cell lines, a high luciferase activity was achieved with various glycofectins, with PEI 25 kD, and with lipofectAMINE. After three transfections applied daily using alpha-glycosylated polylysine, 20% of the cells were transfected. At 24 h after CF transmembrane conductance regulator (CFTR) gene transfer into CF-KM4 cells using alpha-glycosylated polylysine, the immunolocalization of CFTR was analyzed by laser scanning confocal microscopy and the transgenic CFTR was detected by an intense labeling of the plasma membrane. The presence of membrane lectins, i. e., cell surface receptors binding oligosaccharides, was also examined on MM-39 and CF-KM4 cells by assessing the binding and uptake of fluorescein-labeled neoglycoproteins and fluorescein-labeled glycoplexes (glycofectins complexed to plasmid DNA). Among all the neoglycoproteins and glycoplexes tested, those bearing alpha-mannosylated derivatives were most efficiently taken up by both normal and CF gland serous cells. However, alpha-mannosylated polylysine was quite inefficient for gene transfer, indicating that the efficiency of gene transfer is determined both by the uptake of the complexes and also by their intracellular trafficking. Moreover, our results show that an efficient in vitro gene transfer was achieved in human airway gland serous cells with the same synthetic vectors described to efficiently transfect human airway surface epithelial cells

    : PDE4 inhibition blocks preterm delivery

    Get PDF
    The aim of this study was to explore the anti-inflammatory properties of phosphodiesterase-4 (PDE4) inhibitors in vivo and their potential ability to prevent inflammation-induced preterm delivery. Indeed, intrauterine inflammation is the major etiology of very preterm delivery, the leading cause of neonatal mortality and morbidity. Intrauterine injection of Escherichia coli LPS in 15-day-pregnant mice induced an increase of PDE4 activity and PDE4B expression at the maternofetal interface, a rise of amniotic fluid levels of TNF-alpha, IL-1beta, IL-6, and IL-10 and provoked massive preterm delivery and fetal demise. Selective PDE4 inhibition by rolipram prevented the rise in the proinflammatory cytokines. Following the nuclear translocation of the transcription factor NFkappaB, as a marker of cellular activation after the inflammatory challenge, showed a time-dependent sequential activation of the gestational tissues, from the uterine mesometrial to the fetal compartment, particularly in the glycogen-trophoblastic cells of the placenta. This activation was disrupted by PDE4 inhibition, and inflammation-induced preterm delivery and fetal demise were prevented. PDE4 selective inhibitors may thus represent a novel effective treatment to delay inflammation-induced preterm delivery and to prevent adverse outcomes in infants

    PDE4 inhibition prevents preterm delivery induced by an intrauterine inflammation

    No full text
    International audienc
    corecore