110 research outputs found

    Plasmacytoid Dendritic Cells: From Heart to Vessels

    Get PDF
    Cardiovascular diseases, formerly only attributed to the alterations of the stromal component, are now recognized as immune-based pathologies. Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators in heart and vessels. They highly produce IFN type I that promote the polarization of T cells towards a Th1 phenotype; however, pDCs can also participate to suppressive networks via the recruitment of T regulatory cells that downmodulate proinflammatory responses. pDCs populate the vessel wall layers during pathological conditions, such as atherosclerosis. It is thus clear that a better identification of pDCs activity in cardiovascular diseases can not only elucidate pathological mechanisms but also lead to new therapeutic approaches

    Lung cancer and Toll-like receptors.

    Get PDF
    Lung carcinoma is one of the leading causes of death worldwide. It is a non-immunogenic cancer, resistant to immune surveillance. Toll-like receptors (TLRs) connect the innate to the adaptive immune system. Given that cancerous cells evade the immune system, the activation of TLRs could represent a potential target for cancer therapy. The induction of Th1-like and cytotoxic immunity by TLR signalling could lead to tumour cell death, resulting in tumour regression or arrest. However, basic research and clinical trials revealed that the activation of specific TLRs, such as TLR2, TLR4 and TLR9, do not have any anti-tumour activity in lung carcinoma. Increasing evidence suggests that TLRs are important regulators of tumour biology; however, little is known about their function in lung cancer. Thus, in order to develop new therapeutic approaches, further studies are needed to understand the connection between TLRs and lung cancer progression. This review focuses on the potential mechanisms by which TLR ligands can facilitate or not lung cancer and lung metastases establishment/progression

    Differential regulation of CCL-11/eotaxin-1 and CXCL-8/IL-8 by Gram-positive and Gram-negative bacteria in human airway smooth muscle cells.

    Get PDF
    Background: Bacterial infections are a cause of exacerbation of airway disease. Airway smooth muscle cells (ASMC) are a source of inflammatory cytokines/chemokines that may propagate local airway inflammatory responses. We hypothesize that bacteria and bacterial products could induce cytokine/chemokine release from ASMC. Methods: Human ASMC were grown in culture and treated with whole bacteria or pathogen associated molecular patterns (PAMPs) for 24 or 48 h. The release of eotaxin-I, CXCL-8 or GMCSF was measured by ELISA. Results: Gram-negative E. coli or Gram-positive S. aureus increased the release of CXCL-8, as did IL-1 beta, LPS, FSL-1 and Pam(3)CSK4, whereas FK565, MODLys18 or Poly I:C did not. E. coli inhibited eotaxin-I release under control conditions and after stimulation with IL-1 beta. S. aureus tended to inhibit eotaxin-I release stimulated with IL-1 beta. E. coli or LPS, but not S. aureus, induced the release of GMCSF. Conclusion: Gram-positive or Gram-negative bacteria activate human ASMC to release CXCL-8. By contrast Gram-negative bacteria inhibited the release of eotaxin-I from human ASMCs. E. coli, but not S. aureus induced GMCSF release from cells. Our findings that ASMC can respond directly to Gram-negative and Gram-positive bacteria by releasing the neutrophil selective chemokine, CXCL-8, is consistent with what we know about the role of neutrophil recruitment in bacterial infections in the lung. Our findings that bacteria inhibit the release of the eosinophil selective chemokine, eotaxin-I may help to explain the mechanisms by which bacterial immunotherapy reduces allergic inflammation in the lung

    Doxorubicin-Mediated Cardiotoxicity: Role of Mitochondrial Connexin 43

    Get PDF
    Doxorubicin is the highly effective anthracycline, but its clinical use is limited by cardiotoxicity and consequent dysfunction. It has been proposed that the etiology of this is related to mitochondrial dysfunction. Connexin 43 (Cx43), the principal protein building block of cardiac gap junctions and hemichannels, plays an important role in cardioprotection. Recent reports confirmed the presence of Cx43 in the mitochondria as well. In this study, the role of mitochondrial Cx43 was evaluated 3 or 6 h after Doxorubicin administration to the rat heart cell line H9c2. Pharmacological inhibition of Hsp90 demonstrated that the mitochondrial Cx43 conferred cardioprotection by reducing cytosolic and mitochondrial reactive oxygen species production, mitochondrial calcium overload and mitochondrial membrane depolarization and cytochrome c release. In conclusion, our study demonstrates that Cx43 plays an important role in the protection of cardiac cells from Doxorubicin-induced toxicity

    Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation.

    Get PDF
    Chlamydia pneumoniae is detected by macrophages and other APCs via TLRs and can exacerbate developing atherosclerotic lesions, but how that occurs is not known. Liver X receptors (LXRs) centrally control reverse cholesterol transport, but also negatively modulate TLR-mediated inflammatory pathways. We isolated peritoneal macrophages from wild-type, TLR2, TLR3, TLR4, TLR2/4, MyD88, TRIF, MyD88/TRIF, and IFN regulatory factor 3 (IRF3) KO mice, treated them with live or UV-killed C. pneumoniae in the presence or absence of oxidized LDL, then measured foam cell formation. In some experiments, the synthetic LXR agonist GW3965 was added to macrophages infected with C. pneumoniae in the presence of oxidized LDL. Both live and UV-killed C. pneumoniae induced IRF3 activation and promoted foam cell formation in wild-type macrophages, whereas the genetic absence of TLR2, TLR4, MyD88, TRIF, or IRF3, but not TLR3, significantly reduced foam cell formation. C. pneumoniae-induced foam cell formation was significantly reduced by the LXR agonist GW3965, which in turn inhibited C. pneumoniae-induced IRF3 activation, suggesting a bidirectional cross-talk. We conclude that C. pneumoniae facilitates foam cell formation via activation of both MyD88-dependent and MyD88-independent (i.e., TRIF-dependent and IRF3-dependent) pathways downstream of TLR2 and TLR4 signaling and that TLR3 is not involved in this process. This mechanism could at least partly explain why infection with C. pneumoniae accelerates the development of atherosclerotic plaque and lends support to the proposal that LXR agonists might prove clinically useful in suppressing atherogenesis

    Polyinosinic-polycytidylic Acid limits tumor outgrowth in a mouse model of metastatic lung cancer.

    Get PDF
    Polyinosinic-polycytidylic acid (poly I:C), a TLR3 ligand, is currently being tested in human clinical trials as an adjuvant to anti-cancer vaccines and in combination with other therapies. However, little is known about its activity in established pulmonary metastasis. The aim of our study was to elucidate the effect of poly I:C (1, 10, or 100 μg/mouse) in a mouse model of B16-F10-induced metastatic lung cancer. Lung tumor growth was arrested after a single administration of poly I:C. This was associated with higher influx of mature dendritic cells (DCs), which drove toward a Th1-like, Th17-like, and cytotoxic immune environment. The interference with IFN type I receptor signaling by means of a specific mAb reversed poly I:C-mediated tumor regression due to lower presence of myeloid DCs, cytotoxic DCs (CD11c(+)CD8(+)), NKT cells, CD8(+) T cells, and Th1-like cytokines. Moreover, the adoptive transfer of poly I:C-activated bone marrow-derived DCs into tumor-bearing mice resulted in activities similar to those of the systemic administration of poly I:C on lung tumor burden. In conclusion, our data prove that poly I:C has potential anti-tumor activity in a mouse model of established pulmonary metastasis. The activation of DCs and the production of IFN type I are responsible for an effective T cytotoxic immune response against metastatic lung cancer progression after poly I:C treatment

    Hydrogen sulfide-induced dual vascular effect involves arachidonic acid cascade in rat mesenteric arterial bed.

    Get PDF
    Hydrogen sulfide (H(2)S), a novel gaseous transmitter, is considered a physiological regulator of vascular homeostasis. Recent evidence suggests H(2)S as an endothelium-hyperpolarizing factor (EDHF) candidate. To address this issue, we evaluated the vascular effect of sodium hydrogen sulfide (NaHS), an H(2)S donor, on the rat mesenteric arterial bed. NaHS concentration-response curve was performed on preconstricted mesenteric arterial bed. To assess the contribution of EDHF, we performed a pharmacologic dissection using indomethacin, N(G)-nitro-L-arginine methyl ester (L-NAME), or apamin and charybdotoxin as cyclooxygenase, nitric-oxide synthase, and calcium-dependent potassium channel inhibitors, respectively. In another set of experiments, we used 4-(4-octadecylphenyl)-4-oxobutenoic acid, baicalein, or proadifen as phospholipase A(2) (PLA(2)), lipoxygenase, and cytochrome P450 inhibitors, respectively. Finally, an immunofluorescence study was performed to support the involvement of PLA(2) in mesenteric artery challenged by NaHS. NaHS promoted a dual vascular effect (i.e., vasoconstriction and vasodilation). L-NAME or baicalein administration affected neither NaHS-mediated vasodilation nor vasoconstriction, whereas apamin and charybdotoxin significantly inhibited NaHS-induced relaxation. Pretreatment with PLA(2) inhibitor abolished both the contracting and the relaxant effect, whereas P450 cytochrome blocker significantly reduced NaHS-mediated relaxation. The immunofluorescence study showed that NaHS caused a migration of cytosolic PLA(2) close to the nucleus, which implicates activation of this enzyme. Our data indicate that H(2)S could activate PLA(2), which in turn releases arachidonic acid leading, initially, to vasoconstriction followed by vasodilation mediated by cytochrome P450-derived metabolites. Because EDHF has been presumed to be a cytochrome P450 derivative of the arachidonic acid, our results suggest that H(2)S acts through EHDF release

    AIM2 Inflammasome Activation Leads to IL-1α and TGF-β Release From Exacerbated Chronic Obstructive Pulmonary Disease-Derived Peripheral Blood Mononuclear Cells

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is now the fourth-leading cause of death worldwide and its prevalence is increasing. The progressive decline of lung function and airway remodelling are a consequence of chronic inflammatory responses. It was recently postulated the involvement of the inflammasome in COPD, although the underlying mechanism/s still need to be elucidated. Therefore, we isolated peripheral blood mononuclear cells (PBMCs) from exacerbated/unstable COPD patients. The stimulation of PBMCs with an AIM2 inflammasome activator, Poly dA:dT, led to IL-1α, but not IL-1β, release. The release of this cytokine was caspase-1- and caspase-4-dependent and correlated to higher levels of 8-OH-dG in COPD compared to non-smoker and smoker-derived PBMCs. Interestingly, AIM2-depedent IL-1α release was responsible for higher TGF-β levels, crucial mediator during pro-fibrotic processes associated to COPD progression. In conclusion, our data highlight the involvement of AIM2/caspase-1/caspase-4 in IL-1α-induced TGF-β release in unstable COPD-derived PBMCs, opening new therapeutic perspectives for unstable COPD patients

    Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation.

    Get PDF
    Background/Aims: The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) exerts a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Epidemiological studies proved high levels of circulating S1P in non-small cell lung cancer (NSCLC) patients. Studies in literature suggest that high levels of S1P support carcinogenesis but the exact mechanism is still elusive. The aim of this study was to understand the mechanism/s underlying S1P-mediated lung tumor cell proliferation. Methods: We used human samples of NSCLC, a mouse model of first-hand smoking and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. Results: We found that the expression of S1PR3 was also into the nucleus of lung cells in vitro, data that were confirmed in lung tissues of NSCLC patients, smoking and tumor bearing BaP-exposed mice. The intranuclear, but not the membrane, localization of S1PR3 was associated to S1P-mediated proliferation of lung adenocarcinoma cells. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after Toll Like Receptor (TLR) 9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. Conclusion: These results prove that the nuclear S1PR3/SPHK II axis is involved in lung tumor cell proliferation, highlighting a novel molecular mechanism which could provide differential therapeutic approaches especially in non-responsive lung cancer patients
    corecore