145 research outputs found
The rod domain is not essential for the function of plectin in maintaining tissue integrity
This article is distributed by The American Society for Cell
Biology under license from the author(s). Two months after publication it is available
to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License.-- et al.Epidermolysis bullosa simplex associated with late-onset muscular dystrophy (EBS-MD) is an autosomal recessive disorder resulting from mutations in the plectin gene. The majority of these mutations occur within the large exon 31 encoding the central rod domain and leave the production of a low-level rodless plectin splice variant unaffected. To investigate the function of the rod domain, we generated rodless plectin mice through conditional deletion of exon 31. Rodless plectin mice develop normally without signs of skin blistering or muscular dystrophy. Plectin localization and hemidesmosome organization are unaffected in rodless plectin mice. However, superresolution microscopy revealed a closer juxtaposition of the C-terminus of plectin to the integrin β4 subunit in rodless plectin keratinocytes. Wound healing occurred slightly faster in rodless plectin mice than in wild-type mice, and keratinocytes migration was increased in the absence of the rod domain. The faster migration of rodless plectin keratinocytes is not due to altered biochemical properties because, like full-length plectin, rodless plectin is a dimeric protein. Our data demonstrate that rodless plectin can functionally compensate for the loss of full-length plectin in mice. Thus the low expression level of plectin rather than the absence of the rod domain dictates the development of EBS-MD.This work was supported financially by grants from DEBRA UK and the Netherlands Organization for Scientific Research (NWO/ALW). J.M.d.P. was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (Grant BFU2012-32847).Peer Reviewe
The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA–GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis
We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either α5β1 or αvβ3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, α5β1 but not αvβ3 supports high levels of RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates αvβ3-mediated fibrillogenesis. Despite the fact that α5β1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of α5β1-mediated but not αvβ3-mediated focal contacts. Using chimeras of β1 and β3 subunits, we find that the extracellular domain of β1 controls RhoA activity. By expressing both β1 and β3 at high levels, we show that β1-mediated control of the levels of β3 is important for the distribution of focal contacts. Our findings demonstrate that the pattern of fibronectin receptors expressed on a cell dictates the ability of fibronectin to stimulate RhoA-mediated organization of cell matrix adhesions
Reduced Susceptibility to Two-Stage Skin Carcinogenesis in Mice with Epidermis-Specific Deletion of Cd151
Altered expression of the tetraspanin CD151 is associated with skin tumorigenesis; however, whether CD151 is causally involved in the tumorigenic process is not known. To evaluate its role in tumor formation, we subjected epidermis-specific Cd151 knockout mice to chemical skin carcinogenesis. Mice lacking epidermal Cd151 developed fewer and smaller tumors than wild-type mice after treatment with 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). Furthermore, Cd151-null epidermis showed a reduced hyperproliferative response to short-term treatment with TPA as compared with wild-type skin, whereas epidermal turnover was increased. Tumors were formed in equal numbers after DMBA-only treatment. We suggest that DMBA-initiated keratinocytes lacking Cd151 leave their niches in the epidermis and hair follicles in response to TPA treatment and subsequently are lost by differentiation. Because genetic ablation of Itga3 also reduced skin tumor formation, we tested whether reduced expression of α3 could further suppress tumor formation in epidermis-specific Cd151 knockout mice. Although DMBA/TPA-induced formation of skin tumors was similar in compound heterozygotes for Cd151 and Itga3 to that in wild-type mice, heterozygosity for Itga3 on a Cd151-null background diminished tumorigenesis, suggesting genetic interaction between the two genes. We thus identify CD151 as a critical factor in TPA-dependent skin carcinogenesis
Expression of Integrin α6β4 in Junctional Epidermolysis Bullosa
The integrin α6β4 is a member of the integrin family of adhesion receptors. The integrin α6β4 is preferentially expressed in stratified squamous epithelia, where it is localized in hemidesmosomes. A reduced number of rudimentary he- midesmosomes is often found in skin from patients with junctional epidermolysis bullosa (JEB). In this study we have investigated the expression of α6β4 in skin specimens of patients with junctional (one non-lethal, two lethal) and dystrophic (two) epidermolysis bullosa, using immunofluorescent (IF) staining with five different monoclonal antibodies against the α6 and β4 subunits. The intensity of IF staining of the integrin α6β4 and bullous pemphigoid antigen (BPA) was unreduced along the epidermal basement membrane zone (EBMZ) of all EB patients, compared to that in skin of healthy human controls. However, in the skin of two patients with lethal (Herlitz) JEB, who did not express GB3, IF staining of integrin α6β4 and BPA showed a “stitchy” discontinuous linear pattern along the EBMZ with interruptions at the borders of adjoining basal keratinocytes. The same results were obtained by immunoelectron microscopy. They corresponded with freeze-induced partial cell detachment from the basement membrane at the ultimate baso-lateral edge ot the basal keratinocytes in lethal JEB skin. The basal lamellipodia at that location almost completely lacked tonofilaments and hemidesmosomes. Furthermore, in JEB there was a split between the intra- and extracellular epitopes of the integrin α6β4 receptor, whereas the integrin remains intact in salt-split skin. This suggests that the defect is in α6β4 itself or perhaps its ligand
Different splice variants of filamin-B affect myogenesis, subcellular distribution, and determine binding to integrin β subunits
Integrins connect the extracellular matrix with the cell interior, and transduce signals through interactions of their cytoplasmic tails with cytoskeletal and signaling proteins. Using the yeast two-hybrid system, we isolated a novel splice variant (filamin-Bvar-1) of the filamentous actin cross-linking protein, filamin-B, that interacts with the cytoplasmic domain of the integrin β1A and β1D subunits. RT-PCR analysis showed weak, but wide, expression of filamin-Bvar-1 and a similar splice variant of filamin-A (filamin-Avar-1) in human tissues. Furthermore, alternative splice variants of filamin-B and filamin-C, from which the flexible hinge-1 region is deleted (ΔH1), were induced during in vitro differentiation of C2C12 mouse myoblasts. We show that both filamin-Avar-1 and filamin-Bvar-1 bind more strongly than their wild-type isoforms to different integrin β subunits. The mere presence of the high-affinity binding site for β1A is not sufficient for targeting the filamin-Bvar-1 construct to focal contacts. Interestingly, the simultaneous deletion of the H1 region is required for the localization of filamin-B at the tips of actin stress fibers. When expressed in C2C12 cells, filamin-Bvar-1(ΔH1) accelerates their differentiation into myotubes. Furthermore, filamin-B variants lacking the H1 region induce the formation of thinner myotubes than those in cells containing variants with this region. These findings suggest that specific combinations of filamin mRNA splicing events modulate the organization of the actin cytoskeleton and the binding affinity for integrins
Kidney failure in mice lacking the tetraspanin CD151
The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin α3β1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking the integrin α3 subunit die neonatally because of severe abnormalities in the lung and kidney epithelia. We report the generation of Cd151-null mice that recapitulate the renal pathology of human patients, i.e., with age they develop massive proteinuria caused by focal glomerulosclerosis, disorganization of the glomerular basement membrane, and tubular cystic dilation. However, neither skin integrity nor hearing ability are impaired in the Cd151-null mice. Furthermore, we generated podocyte-specific conditional knockout mice for the integrin α3 subunit that show renal defects similar to those in the Cd151 knockout mice. Our results support the hypothesis that CD151 plays a key role in strengthening α3β1-mediated adhesion in podocytes
- …