5 research outputs found

    The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, [i]Bacillus subtili[/i]s CaSUT007

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699To evaluate the response of cassava stakes to plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007, the changes in cellular compositions and phytohormone were investigated using the fourier transform infrared (FTIR) and high-performance liquid chromatography (HPLC) approach. The objective of this study was to test the hypothesis that CaSUT007 stimulates production of plant cellular components and phytohormone involved in metabolism and growth development mechanisms. Cassava stake treated with CaSUT007 or with sterile distilled water were germinated in sterile soil, after incubation for 28 days, CaSUT007 treated cassava stakes had more lateral root, longer roots, shoot length and greater biomass than the control which enhanced more than 1.3 fold of the cassava's phytohormone as indole-3-acetic acid content of non-treated control. We also focused on plant cellular composition and cassava stake tissues from the two treatments were harvested for FTIR analysis. FTIR analyses revealed that higher accumulated of lipid in response to the strain CaSUT007. The cassava stake treated with the beneficial bacteria B. subtilis strain CaSUT007 showed the higher content of the lipid content as (shown in the spectral regions of CH stretching and CH bending mode associated with cell membrane structure lipids) when compared with those of the cassava stake treated with distilled water. Our results initially demonstrated that CaSUT007 can enhance plant growth under greenhouse conditions by direct stimulation of plant lipid and phytohormone as indole-3-acetic acid production

    Foliar application of systemic acquired resistance (SAR) inducers for controlling grape anthracnose caused by Sphaceloma ampelinum de Bary in Thailand

    Get PDF
    Chitosan and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) are active-elicitors that induce protection in grapevine against several diseases. In this study, treatment of grapevine with chitosan and BTH provided protection to anthracnose, caused by Sphaceloma ampelinum. Chitosan and BTH treatment also increased chitinase, ß-1,3-glucanase and peroxidase activities levels in leaves over non-treated plants. Differential accumulation of these traits was more rapid and pronounced when chitosan and BTH treated plants were infected with S. ampelinum; this pattern indicating priming. The induced resistance by chitosan and BTH was also associated with increased production of salicylic acid (SA) in grapevine leaves, suggesting that SA-dependent signaling pathways are systemically triggered by these compounds. Apart from proteins with defense-related function, most of the proteins induced by chitosan and BTH were involved in defense mechanism, reflecting the strong direct positive effect that chitosan and BTH has on grapevine tolerance to anthracnose disease infection.Keywords: Anthracnose, grapevine, induce resistance, systemic acquired resistance (SAR) biochemical markers, Sphaceloma ampelinumAfrican Journal of Biotechnology Vol. 12(33), pp. 5148-515

    The plant growth promoting bacterium Bacillus sp. CaSUT007 produces phytohormone and extracellular proteins for enhanced growth of cassava

    No full text
    International audienceBacillus sp. strain CaSUT007, a plant growth promoting rhizobacterium isolated from cassava, was investigated for the secretion of compounds that might be involved in plant growth promotion. Extracts containing phytohormone and extracellular proteins were made from the cell-free fluid of CaSUT007 broth cultures. These extracts, along with a whole culture of CaSUT007 and the raw fluid and cellular fractions from a CaSUT007 culture, were applied separately to cassava stakes. The stakes were planted into pots of soil maintained in a greenhouse condition. Under this condition, all of the extracts including phytohormones and extracellular proteins increased root and shoot lengths and cassava biomass as compared to negative control. Our results indicate that the culture extracts, when applied to cassava stakes, increased root and shoot lengths by more than 30%, and increased fresh and dry weights by more than 25% compared to the distilled water control. Thus, photohormone and extracellular proteins secreted by CaSUT007 can influence plant growth and development. Analysis of the photohormone and extracellular proteins extracts revealed indole-3-acetic acid and peptides to be the primary compounds

    Synchrotron-based FTIR microspectroscopy of chili resistance induced by Bacillus subtilis strain D604 against anthracnose disease

    No full text
    The aim of this study was to determine the resistance mechanisms of chili induced by the Bacillus subtilis strain D604 using synchrotron FTIR microspectroscopy (SR-FTIR). In this study, the strain D604 reduced anthracnose disease severity in chili plants by approximately 31.10%. The SR-FTIR spectral changes from the epidermis and mesophyll leaf tissue revealed higher integral areas for the C=O ester from lipids, lignin, or pectin (1770–1700 cm−1) as well as polysaccharides (1200–900 cm−1) in the treated samples of D606 and distilled water and then challenge inoculation with chili anthracnose pathogen, Colletotrichum acutatum. The secondary structure of the Amide I protein failed to convert from alpha helices (centered at 1650 cm−1) to beta sheets (centered at 1600 cm−1) in the mesophyll of samples not treated with D604. This study suggested that the strain D604 induced resistance against anthracnose pathogen in chili by inducing cellular changes related to defense compounds involved in plant defense mechanism
    corecore