102 research outputs found

    Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization.

    Get PDF
    Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage-repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologs of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. colirecBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection

    Functional plasticity in the type IV secretion system of Helicobacter pylori.

    Get PDF
    Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is an essential component of the H. pylori T4SS that has an unusual sequence structure, in which an extraordinary number of direct DNA repeats is predicted to cause rearrangements that invariably yield in-frame insertions or deletions. Here we demonstrate in murine and non-human primate models that immune-driven host selection of rearrangements in CagY is sufficient to cause gain or loss of function in the H. pylori T4SS. We propose that CagY functions as a sort of molecular switch or perhaps a rheostat that alters the function of the T4SS and "tunes" the host inflammatory response so as to maximize persistent infection

    Conserved Transcriptional Unit Organization Of The Cag Pathogenicity Island Among Helicobacter Pylori Strains

    Get PDF
    The Helicobacter pylori cag pathogenicity island (cag PAI) encodes a type IV secretion system that is more commonly found in strains isolated from patients with gastroduodenal disease than from those with asymptomatic gastritis. Genome-wide organization of the transcriptional units in H. pylori strain 26695 was recently established using RNA sequence analysis (Sharma et al., 2010). Here we used quantitative reverse-transcription polymerase chain reaction of open reading frames and intergenic regions to identify putative cag PAI operons in H. pylori; these operons were analyzed further by transcript profiling after deletion of selected promoter regions. Additionally, we used a promoter-trap system to identify functional cag PAI promoters. The results demonstrated that expression of genes on the H. pylori cag PAI varies by nearly five orders of magnitude and that the organization of cag PAI genes into transcriptional units is conserved among several H. pylori strains, including, 26695, J99, G27, and J166. We found evidence for 20 transcripts within the cag PAI, many of which likely overlap. Our data suggests that there are at least 11 operons: cag1-4, cag3-4, cag10-9, cag8-7, cag6-5, cag11-12, cag16-17, cag19-18, cag21-20, cag23-22, and cag25-24, as well as five monocistronic genes (cag4, cag13, cag14, cag15, and cag26). Additionally, the location of four of our functionally identified promoters suggests they are directing expression of, in one case, a truncated version of cag26 and in the other three, transcripts that are antisense to cag7, cag17, and cag23. We verified expression of two of these antisense transcripts, those antisense to cag17 and cag23, by reverse-transcription polymerase chain reaction. Taken together, our results suggest that the cag PAI transcriptional profile is generally conserved among H. pylori strains, 26695, J99, G27, and J166, and is likely complex

    Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence

    Get PDF
    International audienceThe BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive-binding is reduced at low pH and restored by acid neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions and evolves during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA's extraordinary reversible acid responsiveness enables tight mucosal bacterial adherence while also allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutation and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to H. pylori persistence and overt gastric disease

    The gastric microbial community, Helicobacter pylori colonization, and disease

    No full text
    Long thought to be a sterile habitat, the stomach contains a diverse and unique community of bacteria. One particular inhabitant, Helicobacter pylori, colonizes half of the world's human population and establishes a decades-long infection that can be asymptomatic, pathogenic, or even beneficial for the host. Many host and bacterial factors are known to influence an individual's risk of gastric disease, but another potentially important determinant has recently come to light: the host microbiota. Although it is unclear to what extent H. pylori infection perturbs the established gastric microbial community, and H. pylori colonization seems generally resistant to disturbances in the host microbiota, it can modulate H. pylori pathogenicity. Interactions between H. pylori and bacteria at non-gastric sites are likely indirect--via programming of the pro-inflammatory vs. regulatory T lymphocytes--which may have a significant impact on human health

    The technical drift of applied behavior analysis

    No full text
    Four dimensions (applied, analytic, general, conceptual) were selected from Baer, Wolf, and Risley's (1968) seminal article on the nature of applied behavior analysis and were monitored throughout the first 10 volumes of the Journal of Applied Behavior Analysis. Each of the experimental articles in Volumes 1 through 6 and the first half of Volumes 7 through 10 was rated on each of these dimensions. The trends showed that applied behavior analysis is becoming a more purely technical effort, with less interest in conceptual questions. We are using simpler experimental designs and are conducting fewer analogue studies. Although concern for maintenance is increasing, other forms of generality are being measured or analyzed less often. These trends are discussed in terms of a technical drift in applied behavior analysis
    corecore