133 research outputs found

    Dark-State Polaritons in Single- and Double-Λ\Lambda Media

    Full text link
    We derive the properties of polaritons in single-Λ\Lambda and double-Λ\Lambda media using a microscopic equation-of-motion technique. In each case, the polaritonic dispersion relation and composition arise from a matrix eigenvalue problem for arbitrary control field strengths. We show that the double-Λ\Lambda medium can be used to up- or down-convert single photons while preserving quantum coherence. The existence of a dark-state polariton protects this single-photon four-wave mixing effect against incoherent decay of the excited atomic states. The efficiency of this conversion is limited mainly by the sample size and the lifetime of the metastable state.Comment: 7 pages, 6 figure

    Screening effect on the optical absorption in graphene and metallic monolayers

    Get PDF
    Screening is one of the fundamental concepts in solid state physics. It has a great impact on the electronic properties of graphene where huge mobilities were observed in spite of the large concentration of charged impurities. While static screening has successfully explained DC mobilities, screening properties can be significantly changed at infrared or optical frequencies. In this paper we discuss the influence of dynamical screening on the optical absorption of graphene and other 2D electron systems like metallic monolayers. This research is motivated by recent experimental results which pointed out that graphene plasmon linewidths and optical scattering rates can be much larger than scattering rates determined by DC mobilities. Specifically we discuss a process where a photon incident on a graphene plane can excite a plasmon by scattering from an impurity, or surface optical phonon of the substrate.Comment: 19 pages, 2 figure

    Quantum Theory of a Resonant Photonic Crystal

    Full text link
    We present a quantum model of two-level atoms localized in a 3D lattice, based on the Hopfield theory of exciton polaritons. In addition to a polaritonic gap at the exciton energy, a photonic bandgap opens up at the Brillouin zone boundary. Upon tuning the lattice period or angle of incidence to match the photonic gap with the exciton energy, one obtains a combined polaritonic and photonic gap as a generalization of Rabi splitting. For typical experimental parameters, the size of the combined gap is on the order of 25 cm^{-1}, up to 10^5 times the detuned gap size. The dispersion curve contains a branch supporting slow-light modes with vanishing exciton probability density.Comment: 4 pages, 3 figure

    Migrating Knowledge between Physical Scenarios based on Artificial Neural Networks

    Full text link
    Deep learning is known to be data-hungry, which hinders its application in many areas of science when datasets are small. Here, we propose to use transfer learning methods to migrate knowledge between different physical scenarios and significantly improve the prediction accuracy of artificial neural networks trained on a small dataset. This method can help reduce the demand for expensive data by making use of additional inexpensive data. First, we demonstrate that in predicting the transmission from multilayer photonic film, the relative error rate is reduced by 46.8% (26.5%) when the source data comes from 10-layer (8-layer) films and the target data comes from 8-layer (10-layer) films. Second, we show that the relative error rate is decreased by 22% when knowledge is transferred between two very different physical scenarios: transmission from multilayer films and scattering from multilayer nanoparticles. Finally, we propose a multi-task learning method to improve the performance of different physical scenarios simultaneously in which each task only has a small dataset

    Modulation Instability and Pattern Formation in Spatially Incoherent Light Beams

    Full text link
    We present the first experimental observation of modulation instability of partially spatially incoherent light beams in non-instantaneous nonlinear media. We show that even in such a nonlinear partially coherent system (of weakly-correlated particles) patterns can form spontaneously. Incoherent MI occurs above a specific threshold that depends on the beams' coherence properties (correlation distance), and leads to a periodic train of one-dimensional (1D) filaments. At a higher value of nonlinearity, incoherent MI displays a two-dimensional (2D) instability and leads to self-ordered arrays of light spots.Comment: 16 pages, 4 figure
    corecore