30 research outputs found

    Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients

    Get PDF
    Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non‐communicable diseases—where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease

    The toxicokinetic profile of Dex40-GTMAC3 : a novel polysaccharide candidate for reversal of unfractionated heparin

    Get PDF
    Though protamine sulfate is the only approved antidote of unfractionated heparin (UFH), yet may produce life threatening side effects such as systemic hypotension, catastrophic pulmonary vasoconstriction or allergic reactions. We have described 40 kDa dextrans (Dex40) substituted with glycidyltrimethylammonium chloride (GTMAC) as effective, immunogenically and hemodynamically neutral inhibitors of UFH. The aim of the present study was to evaluate in mice and rats toxicokinetic profile of the most promising polymer – Dex40-GTMAC3. Polymer was rapidly eliminated with a half-time of 12.5±3.0 min in Wistar rats, and was mainly distributed to the kidneys and liver in mice. The safety studies included the measurement of blood count and blood biochemistry, erythrocyte osmotic fragility and the evaluation of the histological alterations in kidneys, liver and lungs of mice and rats in acute and chronic experiments. We found that Dex40-GTMAC3 is not only effective but also very well tolerated. Additionally, we found that protamine may cause overt hemolysis with appearance of permanent changes in the liver and kidneys. In summary, fast renal clearance behavior and generally low tissue accumulation of Dex40-GTMAC3 is likely to contribute to its superior to protamine biocompatibility. Intravenous administration of therapeutic doses to living animals does not result in the immunogenic, hemodynamic, blood and organ toxicity. Dex40-GTMAC3 seems to be a promising effective and safe candidate for further clinical development as new UFH reversal agent

    Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection

    Get PDF
    The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.This work was supported by the Polish National Science Centre grant No. 2011/03/B/NZ6/04878 (for MK) and Centre for Preclinical Research and Technology (CePT) Project No. POIG.02.02.00-14-024/08-0 (for MG and MD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Troglitazone, a PPAR-γ agonist, decreases LTC4 concentration in mononuclear cells in patients with asthma

    Full text link
    BACKGROUND Asthma is an inflammatory disorder with multiple mediators involved in the inflammatory response. Despite several attempts, no new anti-inflammatory drugs have been registered for asthma treatment for several years. However, thiazolidinediones, peroxisome proliferator-activated receptor agonists, have demonstrated some anti-inflammatory properties in various experimental settings. The aim of this study was to assess the influence of troglitazone on LTC4 and 15-HETE concentrations. It also evaluates TNF-induced eotaxin synthesis in peripheral blood mononuclear cells from 14 patients with mild asthma and 13 healthy controls. METHODS PBMCs were isolated from the whole blood of the asthmatics and healthy subjects and pretreated with 0.1, 1 or 10μM of Troglitazone. The cells were then exposed to 10-6M calcium jonophore or 10ng/ml TNF. The production and release of LTC4, 15-HETE and eotaxin were then assessed. RESULTS Troglitazone caused a dose-dependent inhibition in LTC4 synthesis in both asthmatics and healthy subjects. Troglitazone did not influence 15-HETE or eotaxin production in either asthmatic patients or in healthy individuals. CONCLUSION Due to its inhibition of LTC4 synthesis, troglitazone therapy is an interesting potential therapeutic approach in asthma and other LTC4 related inflammatory disorders

    Design and In Vitro Evaluation of a Cytotoxic Conjugate Based on the Anti-HER2 Affibody Fused to the Fc Fragment of IgG1

    No full text
    In our previous work we demonstrated that a small protein called affibody can be used for a cytotoxic conjugate development. The anti-HER2 affibody was armed with one moiety of a highly potent auristatin E and specifically killed HER2-positive cancer cells with a nanomolar IC50. The aim of this study was to improve the anti-HER2 affibody conjugate by increasing its size and the number of conjugated auristatin molecules. The affibody was fused to the Fc fragment of IgG1 resulting in a dimeric construct with the molecular weight of 68 kDa, referred to as ZHER2:2891-Fc, ensuring its prolonged half-life in the blood. Due to the presence of four interchain cysteines, the fusion protein could carry four drug molecules. Notably, the in vitro tests of the improved anti-HER2 conjugate revealed that it exhibits the IC50 of 130 pM for the HER2-positive SK-BR-3 cells and 98 nM for the HER2-negative MDA-MB-231 cells. High efficacy and specificity of the auristatin conjugate based on ZHER2:2891-Fc indicate that this construct is suitable for further in vivo evaluation
    corecore