33 research outputs found

    Numerical determination of forces acting on material interfaces : an application to rafting in Ni-superalloys

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1990.Includes bibliographical references (leaves 151-153).by Simona Socrate.M.S

    Impact of woven fabric: Experiments and mesostructure-based continuum-level simulations

    Get PDF
    Woven fabric is an increasingly important component of many defense and commercial systems, including deployable structures, restraint systems, numerous forms of protective armor, and a variety of structural applications where it serves as the reinforcement phase of composite materials. With the prevalence of these systems and the desire to explore new applications, acomprehensive, computationally efficient model for the deformation of woven fabrics is needed. However, modeling woven fabrics is difficult due, inparticular, to the need to simulate the response both at the scale of the entire fabric and at the meso-level, the scale of the yarns that compose the weave. Here, we present finite elements for the simulation of the three- dimensional, high-rated eformation of woven fabric. We employ a continuum- level modeling technique that, through the use of an appropriate unit cell, captures the evolution of the mesostructure of the fabric without explicitly modeling every yarn. Displacement degrees of freedom and degrees of freedom representing the change in crimp amplitude of each yarn family fully determine the deformed geometry of the mesostructure of the fabric, which in turn provides, through the constitutive relations, the internal nodal forces. In order to verify the accuracy of the elements, instrumented ballistic impact experiments with projectile velocities of 22–550 m/s were conducted on single layers of Kevlar ® fabric. Simulations of the experiments demonstrate that the finite elements are capable of efficiently simulating large, complex structures

    Oxidatively Responsive Chain Extension to Entangle Engineered Protein Hydrogels

    Get PDF
    Engineering artificial protein hydrogels for medical applications requires precise control over their mechanical properties, including stiffness, toughness, extensibility, and stability in the physiological environment. Here we demonstrate topological entanglement as an effective strategy to robustly increase the mechanical tunability of a transient hydrogel network based on coiled-coil interactions. Chain extension and entanglement are achieved by coupling the cysteine residues near the N- and C-termini, and the resulting chain distribution is found to agree with the Jacobson–Stockmayer theory. By exploiting the reversible nature of the disulfide bonds, the entanglement effect can be switched on and off by redox stimuli. With the presence of entanglements, hydrogels exhibit a 7.2-fold enhanced creep resistance and a suppressed erosion rate by a factor of 5.8, making the gels more mechanically stable in a physiologically relevant open system. While hardly affecting material stiffness (only resulting in a 1.5-fold increase in the plateau modulus), the entanglements remarkably lead to hydrogels with a toughness of 65 000 J m^(–3) and extensibility to approximately 3000% engineering strain, which enables the preparation of tough yet soft tissue simulants. This improvement in mechanical properties resembles that from double-network hydrogels but is achieved with the use of a single associating network and topological entanglement. Therefore, redox-triggered chain entanglement offers an effective approach for constructing mechanically enhanced and responsive injectable hydrogels

    Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures

    Get PDF
    Tailorable anisotropic intrinsic and scale-dependent properties of carbon nanotubes (CNTs) make them attractive elements in next-generation advanced materials. However, in order to model and predict the behavior of CNTs in macroscopic architectures, mechanical constitutive relations must be evaluated. This study presents the full stiffness tensor for aligned CNT-reinforced polymers as a function of the CNT packing (up to ∼20 vol. %), revealing noticeable anisotropy. Finite element models reveal that the usually neglected CNT waviness dictates the degree of anisotropy and packing dependence of the mechanical behavior, rather than any of the usually cited aggregation or polymer interphase mechanisms. Combined with extensive morphology characterization, this work enables the evaluation of structure-property relations for such materials, enabling design of aligned CNT material architectures.NECST ConsortiumUnited States. Army Research Office (Contract No. W911NF- 07-D-0004)United States. Army Research Office (Contract No. W911NF-13-D-0001)United States. National Aeronautics and Space Administration (NASA Space Technology Research Fellowship Grant No. NNX11AN79H)National Science Foundation (U.S.) (Grant No. CMMI-1130437

    Biomechanics of single cortical neurons

    Get PDF
    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude, 10, 1, and 0.1 μm s[superscript −1]. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper)elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented in a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (DAAD-19-02-D-002)Joint Improvised Explosive Device Defeat Organization (U.S.) (W911NF-07-1-0035)National Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Molecular, Cell, and Tissue Biomechanics Training Grant)Ecole des ponts et chaussees (France)Computation and Systems Biology Programme of Singapore--Massachusetts Institute of Technology Allianc

    Mechanics of microvoid nucleation and growth in high-strength metastable austenitic steels

    No full text
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1995.Includes bibliographical references (leaves 173-177).Simona Socrate.Ph.D
    corecore