6,430 research outputs found

    Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets

    Get PDF
    We consider the problem of computing the minimum value fmin,Kf_{\min,K} of a polynomial ff over a compact set KRnK \subseteq \mathbb{R}^n, which can be reformulated as finding a probability measure ν\nu on KK minimizing Kfdν\int_K f d\nu. Lasserre showed that it suffices to consider such measures of the form ν=qμ\nu = q\mu, where qq is a sum-of-squares polynomial and μ\mu is a given Borel measure supported on KK. By bounding the degree of qq by 2r2r one gets a converging hierarchy of upper bounds f(r)f^{(r)} for fmin,Kf_{\min,K}. When KK is the hypercube [1,1]n[-1, 1]^n, equipped with the Chebyshev measure, the parameters f(r)f^{(r)} are known to converge to fmin,Kf_{\min,K} at a rate in O(1/r2)O(1/r^2). We extend this error estimate to a wider class of convex bodies, while also allowing for a broader class of reference measures, including the Lebesgue measure. Our analysis applies to simplices, balls and convex bodies that locally look like a ball. In addition, we show an error estimate in O(logr/r)O(\log r / r) when KK satisfies a minor geometrical condition, and in O(log2r/r2)O(\log^2 r / r^2) when KK is a convex body, equipped with the Lebesgue measure. This improves upon the currently best known error estimates in O(1/r)O(1 / \sqrt{r}) and O(1/r)O(1/r) for these two respective cases.Comment: 30 pages with 10 figures. Update notes for second version: Added a new section containing numerical examples that illustrate the theoretical results -- Fixed minor mistakes/typos -- Improved some notation -- Clarified certain explanations in the tex

    A rigorous model for constraint release in the bulk and the near-wall region

    Get PDF
    In the present work an attempt is made to build a rigorous theoretical model for the constraint release mechanism found to play an important role in the dynamics of polymer melts. Our goal is a formalism free of adjustable parameters and ''ad-hoc'' assumptions which are inherent to existing theories for constraint release. Our model is capable to describe both thermal and convective constraint release. These processes have the same effect on chains and accordingly can be unified in a single framework. Since polymer chains in the bulk and in the near-wall layer may experience different types of constraint release, the latter case is studied separately. This topic is closely related to the long-standing problem of polymer melt flow instabilities encountered during extrusion. Nowadays it is believed that constraint release plays a crucial role in the dynamics of tethered chains preventing them from being squeezed against the wall. The resulting non-monotonous slip-law is the most probable reason of the so-called spurt instability. \u

    Design of a 30 GHz bragg reflector for a Raman FEL

    Get PDF
    A design of a Bragg reflector for a Raman FEL is described. It is shown that mode conversion occurs whenever the axial wavenumbers of the two modes fulfil the Bragg condition. With a constant ripple of the corrugation it is shown that the reflected radiation also contains higher order modes, assuming that the incident radiation consists only of a TE11 mode. The mode purity can be increased by increasing the length of the reflector at the expense of a smaller reflection bandwidth. A more flexible method is by applying a Hamming window to the corrugation of the reflector. Contributions of other modes to the reflected radiation can in that case be neglected. The reflector will be installed in a Raman laser to be able to compare the amplifier with the oscillator configuration. Therefore some preliminary results are also presented about the start-up of the Raman laser

    A universal constitutive model for the interfacial layer between a polymer melt and a solid wall

    Get PDF
    In a preceeding report we derived the evolution equation for the bond vector probability distribution function (BVPDF) of tethered molecules. It describes the behavior of polymer molecules attached to a solid wall interacting with an adjacent flowing melt of bulk polymer molecules and includes all the major relaxation mechanisms such as constraint release, retraction and convection. The derived equation is quite universal and valid for all flow regimes. In the present paper the developed formalism is further analyzed. We begin our analysis with the simple case of slow flows. Then, as expected, a remarkable reduction of the theory is possible. Later on the more general case is considered. \u

    Dynamics of chains grafted on solid wall during polymer melt extrusion

    Get PDF
    The objective of the present work is the mathematical modeling of the dynamics of polymer molecules grafted on a solid boundary during polymer melt extrusion. This topic is closely related to the long-standing problem of polymer flow instabilities encountered in industry when extruding melts. In order to describe the behavior of the tethered chains, we introduce the bond vector probability distribution function (BVPDF) which appears to be a simple, yet effective mathematical 'tool'. The bond vector, i.e. the tangent vector to a polymer chain depending on the position along the chain and on time, describes the local geometry via its direction and the local stretching of the chain via its length. The BVPDF contains all information about the geometry of the ensemble of chains. Via averaging over the BVPDF we can calculate all interesting macrsocopic quantities, e.g. the thickness of and stress in the layer of tethered molecules. The time dependence of the BVPDF yields the time evolution of the system. We derive the equation of motion for the BVPDF taking into account all important mechanisms, such as reptation and (convective) constraint release. Besides that, we show that all macroscopic quantities of practical interest can be expressed via second order moments of this distribution function. \u

    Flow-induced correlation effects within a linear chain in a polymer melt

    Get PDF
    A framework for a consistent description of the flow-induced correlation effects within a linear polymer chain in a melt is proposed. The formalism shows how correlations between chain segments in the flow can be incorporated into a hierarchy of distribution functions for tangent vectors. The present model allows one to take into account all the major relaxation mechanisms. Special cases of the derived set of equations are shown to yield existing models and shed some light on the connection between them. Consequences of several assumptions widely used in the literature are analyzed within the developed framework

    Studies of a Terawatt X-Ray Free-Electron Laser

    Get PDF
    The possibility of constructing terawatt (TW) x-ray free-electron lasers (FELs) has been discussed using novel superconducting helical undulators [5]. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation code [7]. Steady-state simulations have been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice. The importance of extreme focusing of the electron beam in the production of TW power levels means that the undulator is not the prime driver for a TW FEL, and simulations are also described using planar undulators that reach near-TW power levels. In addition, TW power levels can be reached using pure self-amplified spontaneous emission (SASE) or with novel self-seeding configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure
    corecore