78 research outputs found
Discrete orthogonal projections on multiple knot periodic splines
AbstractThis paper establishes properties of discrete orthogonal projections on periodic spline spaces of order r, with knots that are equally spaced and of arbitrary multiplicity M⩽r. The discrete orthogonal projection is expressed in terms of a quadrature rule formed by mapping a fixed J-point rule to each sub-interval. The results include stability with respect to discrete and continuous norms, convergence, commutator and superapproximation properties. A key role is played by a novel basis for the spline space of multiplicity M, which reduces to a familiar basis when M=1
Multiscale approximation for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere
AbstractIn this paper, we prove convergence results for multiscale approximation using compactly supported radial basis functions restricted to the unit sphere, for target functions outside the reproducing kernel Hilbert space of the employed kernel
Equidistribution of the Fekete points on the sphere
The Fekete points are the points that maximize a Vandermonde-type determinant
that appears in the polynomial Lagrange interpolation formula. They are well
suited points for interpolation formulas and numerical integration. We prove
the asymptotic equidistribution of the Fekete points in the sphere. The way we
proceed is by showing their connection with other array of points, the
Marcinkiewicz-Zygmund arrays and the interpolating arrays, that have been
studied recently
Equidistribution of the Fekete points on the sphere
The Fekete points are the points that maximize a Vandermonde-type determinant
that appears in the polynomial Lagrange interpolation formula. They are well
suited points for interpolation formulas and numerical integration. We prove
the asymptotic equidistribution of the Fekete points in the sphere. The way we
proceed is by showing their connection with other array of points, the
Marcinkiewicz-Zygmund arrays and the interpolating arrays, that have been
studied recently
Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis
The Boubaker polynomials are investigated in this paper. Using Riordan
matrices analysis, a sequence of relations outlining the relations with
Chebyshev and Fermat polynomials have been obtained. The obtained expressions
are a meaningful supply to recent applied physics studies using the Boubaker
polynomials expansion scheme (BPES).Comment: 12 pages, LaTe
Point sets on the sphere with small spherical cap discrepancy
In this paper we study the geometric discrepancy of explicit constructions of
uniformly distributed points on the two-dimensional unit sphere. We show that
the spherical cap discrepancy of random point sets, of spherical digital nets
and of spherical Fibonacci lattices converges with order . Such point
sets are therefore useful for numerical integration and other computational
simulations. The proof uses an area-preserving Lambert map. A detailed analysis
of the level curves and sets of the pre-images of spherical caps under this map
is given
Quasi-Monte Carlo rules for numerical integration over the unit sphere
We study numerical integration on the unit sphere using equal weight quadrature rules, where the weights are such
that constant functions are integrated exactly.
The quadrature points are constructed by lifting a -net given in the
unit square to the sphere by means of an area
preserving map. A similar approach has previously been suggested by Cui and
Freeden [SIAM J. Sci. Comput. 18 (1997), no. 2].
We prove three results. The first one is that the construction is (almost)
optimal with respect to discrepancies based on spherical rectangles. Further we
prove that the point set is asymptotically uniformly distributed on
. And finally, we prove an upper bound on the spherical cap
-discrepancy of order (where denotes the
number of points). This slightly improves upon the bound on the spherical cap
-discrepancy of the construction by Lubotzky, Phillips and Sarnak [Comm.
Pure Appl. Math. 39 (1986), 149--186]. Numerical results suggest that the
-nets lifted to the sphere have spherical cap
-discrepancy converging with the optimal order of
Pointwise convergence of multiple Fourier series: Sufficient conditions and an application to numerical integration
AbstractSufficient conditions are established for the pointwise convergence of square partial sums of multiple Fourier series, in any number of dimensions, for functions with discontinuities. The result is used to extend the theory of lattice rules for multiple integration
- …