Abstract

We study numerical integration on the unit sphere S2R3\mathbb{S}^2 \subset \mathbb{R}^3 using equal weight quadrature rules, where the weights are such that constant functions are integrated exactly. The quadrature points are constructed by lifting a (0,m,2)(0,m,2)-net given in the unit square [0,1]2[0,1]^2 to the sphere S2\mathbb{S}^2 by means of an area preserving map. A similar approach has previously been suggested by Cui and Freeden [SIAM J. Sci. Comput. 18 (1997), no. 2]. We prove three results. The first one is that the construction is (almost) optimal with respect to discrepancies based on spherical rectangles. Further we prove that the point set is asymptotically uniformly distributed on S2\mathbb{S}^2. And finally, we prove an upper bound on the spherical cap L2L_2-discrepancy of order N1/2(logN)1/2N^{-1/2} (\log N)^{1/2} (where NN denotes the number of points). This slightly improves upon the bound on the spherical cap L2L_2-discrepancy of the construction by Lubotzky, Phillips and Sarnak [Comm. Pure Appl. Math. 39 (1986), 149--186]. Numerical results suggest that the (0,m,2)(0,m,2)-nets lifted to the sphere S2\mathbb{S}^2 have spherical cap L2L_2-discrepancy converging with the optimal order of N3/4N^{-3/4}

    Similar works

    Full text

    thumbnail-image

    Available Versions