4,685 research outputs found
A method for atomistic spin dynamics simulations: implementation and examples
We present a method for performing atomistic spin dynamic simulations. A
comprehensive summary of all pertinent details for performing the simulations
such as equations of motions, models for including temperature, methods of
extracting data and numerical schemes for performing the simulations is given.
The method can be applied in a first principles mode, where all interatomic
exchange is calculated self-consistently, or it can be applied with frozen
parameters estimated from experiments or calculated for a fixed
spin-configuration. Areas of potential applications to different magnetic
questions are also discussed. The method is finally applied to one situation
where the macrospin model breaks down; magnetic switching in ultra strong
fields.Comment: 14 pages, 19 figure
Atomistic spin dynamics of the CuMn spin glass alloy
We demonstrate the use of Langevin spin dynamics for studying dynamical
properties of an archetypical spin glass system. Simulations are performed on
CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the
system to the low temperature phase. The system is modeled by a Heisenberg
Hamiltonian where the Heisenberg interaction parameters are calculated by means
of first-principles density functional theory. Simulations are performed by
numerically solving the Langevin equations of motion for the atomic spins. It
is shown that dynamics is governed, to a large degree, by the damping parameter
in the equations of motion and the system size. For large damping and large
system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure
Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study
The dynamical behavior of the magnetism of diluted magnetic semiconductors
(DMS) has been investigated by means of atomistic spin dynamics simulations.
The conclusions drawn from the study are argued to be general for DMS systems
in the low concentration limit, although all simulations are done for 5%
Mn-doped GaAs with various concentrations of As antisite defects. The
magnetization curve, , and the Curie temperature have been
calculated, and are found to be in good correspondence to results from Monte
Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium
behavior of the magnetic pair correlation function have been extracted. The
dynamics of DMS systems reveals a substantial short ranged magnetic order even
at temperatures at or above the ordering temperature, with a non-vanishing pair
correlation function extending up to several atomic shells. For the high As
antisite concentrations the simulations show a short ranged anti-ferromagnetic
coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently
large concentrations we do not observe any long ranged ferromagnetic
correlation. A typical dynamical response shows that starting from a random
orientation of moments, the spin-correlation develops very fast ( 1ps)
extending up to 15 atomic shells. Above 10 ps in the simulations, the
pair correlation is observed to extend over some 40 atomic shells. The
autocorrelation function has been calculated and compared with ferromagnets
like bcc Fe and spin-glass materials. We find no evidence in our simulations
for a spin-glass behaviour, for any concentration of As antisites. Instead the
magnetic response is better described as slow dynamics, at least when compared
to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure
Performance of an Operating High Energy Physics Data Grid: D0SAR-Grid
The D0 experiment at Fermilab's Tevatron will record several petabytes of
data over the next five years in pursuing the goals of understanding nature and
searching for the origin of mass. Computing resources required to analyze these
data far exceed capabilities of any one institution. Moreover, the widely
scattered geographical distribution of D0 collaborators poses further serious
difficulties for optimal use of human and computing resources. These
difficulties will exacerbate in future high energy physics experiments, like
the LHC. The computing grid has long been recognized as a solution to these
problems. This technology is being made a more immediate reality to end users
in D0 by developing a grid in the D0 Southern Analysis Region (D0SAR),
D0SAR-Grid, using all available resources within it and a home-grown local task
manager, McFarm. We will present the architecture in which the D0SAR-Grid is
implemented, the use of technology and the functionality of the grid, and the
experience from operating the grid in simulation, reprocessing and data
analyses for a currently running HEP experiment.Comment: 3 pages, no figures, conference proceedings of DPF04 tal
Fluid Particle Accelerations in Fully Developed Turbulence
The motion of fluid particles as they are pushed along erratic trajectories
by fluctuating pressure gradients is fundamental to transport and mixing in
turbulence. It is essential in cloud formation and atmospheric transport,
processes in stirred chemical reactors and combustion systems, and in the
industrial production of nanoparticles. The perspective of particle
trajectories has been used successfully to describe mixing and transport in
turbulence, but issues of fundamental importance remain unresolved. One such
issue is the Heisenberg-Yaglom prediction of fluid particle accelerations,
based on the 1941 scaling theory of Kolmogorov (K41). Here we report
acceleration measurements using a detector adapted from high-energy physics to
track particles in a laboratory water flow at Reynolds numbers up to 63,000. We
find that universal K41 scaling of the acceleration variance is attained at
high Reynolds numbers. Our data show strong intermittency---particles are
observed with accelerations of up to 1,500 times the acceleration of gravity
(40 times the root mean square value). Finally, we find that accelerations
manifest the anisotropy of the large scale flow at all Reynolds numbers
studied.Comment: 7 pages, 4 figure
Radiation-Hard Optical Link for SLHC
We study the feasibility of fabricating an optical link for the SLHC ATLAS silicon tracker based on the current pixel optical link architecture. The electrical signals between the current pixel modules and the optical modules are transmitted via micro-twisted cables. The optical signals between the optical modules and the data acquisition system are transmitted via rad-hard SIMM fibres spliced to rad-tolerant GRIN fibres. The link has several nice features. We have measured the bandwidths of the transmission lines and the results indicate that the micro twisted-pair cables can transmit signals up to ~ 1 Gb/s. The fusion spliced fibre ribbon can transmit signals up to ~ 2 Gb/s as reported in the previous conference. We have irradiated VCSEL arrays with 24 GeV protons and find four types of VCSEL arrays from three vendors survive to the SLHC dosage. We have also demonstrated the feasibility of fabricating a novel opto-pack for housing VCSEL and PIN arrays with BeO as the substrate
Study of the Radiation-Hardness of VCSEL and PIN
The silicon trackers of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN (Geneva) use optical links for data transmission. An upgrade of the trackers is planned for the Super LHC (SLHC), an upgraded LHC with ten times higher luminosity. We study the radiation-hardness of VCSELs (Vertical-Cavity Surface-Emitting Laser) and GaAs and silicon PINs using 24 GeV/c protons at CERN for possible application in the data transmission upgrade. The optical power of VCSEL arrays decreases significantly after the irradiation but can be partially annealed with high drive currents. The responsivities of the PIN diodes also decrease significantly after irradiation, but can be recovered by operating at higher bias voltage. This provides a simple mechanism to recover from the radiation damage
A Precise Measurement of the Weak Mixing Angle in Neutrino-Nucleon Scattering
We report a precise measurement of the weak mixing angle from the ratio of
neutral current to charged current inclusive cross-sections in deep-inelastic
neutrino-nucleon scattering. The data were gathered at the CCFR neutrino
detector in the Fermilab quadrupole-triplet neutrino beam, with neutrino
energies up to 600 GeV. Using the on-shell definition, , we obtain .Comment: 10 pages, Nevis Preprint #1498 (Submitted to Phys. Rev. Lett.
Status Report of the ATLAS SCT Optical Links
The ATLAS SCT optical links system is reviewed. The assembly and testing of prototype opto-hamesses are described. Results are also given from a system test of the SCT barrel modules, including optical readout
- …