1,161 research outputs found

    Non-response biases in surveys of schoolchildren: the case of the English Programme for International Student Assessment (PISA) samples

    Get PDF
    We analyse response patterns to an important survey of schoolchildren, exploiting rich auxiliary information on respondents' and non-respondents' cognitive ability that is correlated both with response and the learning achievement that the survey aims to measure. The survey is the Programme for International Student Assessment (PISA), which sets response thresholds in an attempt to control the quality of data. We analyse the case of England for 2000, when response rates were deemed sufficiently high by the organizers of the survey to publish the results, and 2003, when response rates were a little lower and deemed of sufficient concern for the results not to be published. We construct weights that account for the pattern of non-response by using two methods: propensity scores and the generalized regression estimator. There is clear evidence of biases, but there is no indication that the slightly higher response rates in 2000 were associated with higher quality data. This underlines the danger of using response rate thresholds as a guide to quality of data

    Geology of Southern Connecticut, North-South Transect

    Get PDF
    Guidebook for field trips in Connecticut and adjacent areas of New York and Rhode Island: New England Intercollegiate Geological Conference 77th annual meeting, Yale University, New Haven, Connecticut, October 4-6, 1985: Trip C

    Geology of Southern Connecticut, East-West Transect

    Get PDF
    Guidebook for field trips in Connecticut and adjacent areas of New York and Rhode Island: New England Intercollegiate Geological Conference 77th annual meeting, Yale University, New Haven, Connecticut, October 4-6, 1985: Trip B

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    Improving evaluation of the distribution and density of immunostained cells in breast cancer using computerized video image analysis

    Get PDF
    Quantitation of cell density in tissues has proven problematic over the years. The manual microscopic methodology, where an investigator visually samples multiple areas within slides of tissue sections, has long remained the basic ‘standard’ for many studies and for routine histopathologic reporting. Nevertheless, novel techniques that may provide a more standardized approach to quantitation of cells in tissue sections have been made possible by computerized video image analysis methods over recent years. The present study describes a novel, computer-assisted video image analysis method of quantitating immunostained cells within tissue sections, providing continuous graphical data. This technique enables the measurement of both distribution and density of cells within tissue sections. Specifically, the study considered immunoperoxidase-stained tumor infiltrating lymphocytes within breast tumor specimens, using the number of immunostained pixels within tissue sections to determine cellular density and number. Comparison was made between standard manual graded quantitation methods and video image analysis, using the same tissue sections. The study demonstrates that video image techniques and computer analysis can provide continuous data on cell density and number in immunostained tissue sections, which compares favorably with standard visual quantitation methods, and may offer an alternative

    The Development of Intervention E-Learning Materials and Implementation Techniques For Cyber-Security Behaviour Change

    Get PDF
    Many organisations show compliance in running security awareness programmes, but this does not necessarily mean end users will change their behavior. This highlights one of the main challenges in cyber security. Providing awareness in a tool is a useful first step but it doesn’t necessarily lead to changing behaviour [3]. In contrast, completing compliance or achieving competence can actually lead people to being more averse to change than before or even partaking in risky behaviour. This paper describes the collaboration between a specialist computer business (LiMETOOLS) and psychology academics to draw on psychology theory (e.g. Social Cognitive Theory, [4]) and pedagogy (e.g. self-directed learning) to create innovative techniques using interactive learning tools resulting in behaviour change. The aim of this article is to show how we have moved beyond developing materials that change awareness, to those that effectively change digital behaviour. We examine methodologies that can be integrated within online learning tools to embed text, video clips, gamification, and quizzes to encourage measurable cyber security behaviour change. A challenge within behaviour change is the maintenance of these behaviours and we are exploring the potential impact of using ‘drip-feed learning’ in the form of a short video magazine with embedded quizzes and ‘nudges’ of behaviour changes that have previously learnt, delivered over a long period of time in very short stimulus packages

    Material Loss at the Head Taper Junction of the Metal-on-Metal Pinnacle Total Hip Replacement

    Get PDF
    Introduction The ASR XL (DePuy) total hip replacement (THR) is a notable example of a modern metal-on-metal (MOM) implant design that has demonstrated unacceptable survival rates, leading to its recall by the manufacturer; national joint registries have reported revision rates at 7 years of 40% when paired with the Corail stem [1]. The ASR XL THR has a considerably greater risk of revision than the ASR resurfacing hip, which used the same bearing design. This suggests that material loss at the head-stem junction may be responsible for the greater percentage of THR failures observed in this design. The Pinnacle MOM-THR (DePuy) however used the same Corail stem as the ASR XL THR but demonstrated better clinical results, with revision rates of less than 10% at 7 years [1]. The ASR XL and MOM Pinnacle are two designs that have been widely used in hip replacement surgery. The reasons for the differences in the failure rates of the two designs are not fully understood. Comparing the mechanisms of failure of both hips will help surgeons understand whether patients with MOM Pinnacle hips will experience the same types of problems as with those seen with the ASR XL. The aims of this retrieval study were to investigate the significance of differences between the ASR XL and MOM Pinnacle in relation to: (1) pre-revision whole blood Co/Cr ratios, (2) visual evidence of taper corrosion, (3) volumetric material loss at the bearing surfaces and (4) volumetric material loss at the taper surfaces. Methods This study involved a series of failed MOM hips consisting of the ASR XL (n=30) and Pinnacle (n=30), all that had been used with a Corail stem. The bearing material in each design was cobalt-chromium and the Corail stem is of a cementless titanium 12/14 design. The ASR XL and Pinnacle had a median head diameter of 47mm (39-55) and 36mm (36-40) respectively, and a median time to revision of 38.5 months (12-74) and 55 months (14-86) respectively. Pre-revision whole blood metal ion levels were collected for each Table 1 summarises patient and implant data for the hips in this study. The female taper surfaces of all 60 heads were examined macroscopically and microscopically to assess the severity of corrosion. Each surface was graded with a score of between 1 (no corrosion) and 4 (severe corrosion) using a well-published scoring system, which has been shown to be statistically reliable. A Zeiss Prismo (Carl Zeiss Ltd, Rugby, UK) coordinate measuring machine (CMM) was used to determine the volume of material loss at the cup and head bearing surfaces. Up to 300,000 data points were collected using a 2mm ruby stylus that was translated along 400 polar scan lines on the surface. The raw data was used to map regions of material loss by comparing with the unworn geometry of the bearing. A Talyrond 365 (Hobson, Leicester, UK) roundness measuring machine was used to measure the volumetric material loss at each of the head taper surfaces. Published protocols were used to take a series of 180 vertical traces along the taper surface using a 5ÎŒm diamond stylus; worn and unworn regions were mapped and used to calculate material loss. Neither the volumetric measurement data nor corrosion scores were normally distributed. Therefore non-parametric tests were performed to assess the statistical significance of differences between the two designs in relation to the parameters under investigation in this study. Results Both the whole blood Co ion levels and the Co/Cr ratios, Figure 1, of the ASR XL hips were significantly greater than the Pinnacles (p<0.05). There was no significant difference between the whole blood Cr ion levels between the two designs (p=0.0542). 18 of the ASR XL hips presented evidence of edge wearing of the cup, compared with 14 Pinnacle hips; this difference was not significant (p=0.438). The length of the stem trunnion contact engagement length with the taper was approximated as being 10.5mm for both designs. The median time to revision of the ASR XL hips was significantly less than the Pinnacle hips (p<0.01). There was visual evidence of corrosion in 93% (n=28) and 90% (n=27) of head tapers for the ASR XLs and Pinnacles respectively. Moderate to severe corrosion was observed in 67% (n=20) of ASR XLs compared to 60% (n=18) of Pinnacles. There was however no statistically significant difference between the scores of the two groups (p=0.927). Figure 2 presents the distribution of material loss rates for the bearing and taper surfaces of the two designs in this study. The median total bearing surface (combined cup and head) rate of material loss for the ASR XL and Pinnacle hips was 4.45mm3/year (0.32-22.85) and 4.03mm3/year (0.87-62.12) respectively. There was no significant difference between the two groups (p=0.928). The median material loss rate at the taper surfaces of the ASR XL and Pinnacle hips was 0.62mm3/year (0-4.20) and 0.30mm3/year (0-3.12); this difference was not significant (p=0.198). Discussion The work of this study presents comparisons of retrieval findings between the ASR XL and Pinnacle MOM-THRs; these hip designs were two of the most commonly implanted in patients worldwide. The significantly greater whole blood Co/Cr ratios found in the ASR XL group compared to the Pinnacle group are of interest. It is speculated that a Co/Cr ratio of greater than 1 may be an indicator of corrosion of an implant whereby more Cr ions are retained on the surface, whilst comparatively more Co ions are released into the blood. In the current study we found wear rates at the bearing surfaces of both designs to be comparable, suggesting that the significantly greater Co/Cr ratios in the ASR XL hips must be due to greater corrosion at the taper junction than the Pinnacles. Although the ASR XL hips had been implanted for a significantly shorter period of time, our visual assessment of the corrosion of the taper junctions found that corrosion scores were comparable between the two designs; indeed, a marginally greater number of ASR XL tapers had evidence of moderate to severe corrosion. This finding, coupled with the elevated Co/Cr ratios suggests that the ASR XL design is more susceptible to corrosion at the taper junction than the Pinnacle hip. We found that the median rate of material loss at the ASR XL taper was over twice that of the Pinnacle taper. Whilst not statistically significant, this difference may be due to a greater risk of corrosion at this interface in the ASR XL design. The differences in material loss and corrosion that were observed at the taper junctions may be explained by considering the larger head sizes of the ASR XL hips in comparison to the Pinnacles. It has previously been shown that increasing head size is correlated with greater visual evidence of corrosion and that increased frictional torque along the taper junction due a larger head diameter can increase the risk of fretting-corrosion. It is suggested therefore that the combination of the larger head sizes of the ASR XLs coupled with the comparatively short, rough surface of the Corail trunnion results in a cumulative effect leading to greater corrosion at the taper junction. Significance The results of the study suggest that the combination of (1) increased frictional torque in the larger ASR XLs and (2) the rough Corail trunnion surface, results in greater corrosion at the taper junction in comparison to the Pinnacle hips; this helps to explain the higher risk of revision in this hip design

    Identifying The Pattern of Material Loss at the Head-Neck Junction Wear Helps Determine the Mechanism of Failure of Metal on Metal Total Hip Replacements

    Get PDF
    Material loss at the Head-Neck junction accounts for a third of the total volume material loss in contemporary metal-on-metal total hip replacements. It is speculated that the material loss is the result of corrosion and mechanical wear (fretting). High volumes of material loss have been reported, especially from the head taper. There is only one report on characterizing the pattern of material loss and this was in a very small number of cases (n=5). Our aim was to identify the different material loss patterns at the head taper and their corresponding mechanisms We retrospectively analysed a series of retrieved Large Head Metal on Metal Total Hip Replacements (155 cups, 155 femoral heads and 4 stems). We measured material loss on the bearing surfaces and the head-neck junction using well-published metrology methods. Furthermore we collected patient (age, gender and time of primary/revision operations), pre-revision (cobalt and chromium blood metal ion, oxford hip score, cup orientation and implant position) implant (cup and head size, manufacturer and corrosion severity) data. Finally we used surface analysis techniques (microscopy and spectroscopy) to identify fretting, imprinting and the material composition of debris. We devised a novel four-group classification and two blinded engineers classified the material loss patterns using wear maps derived from the metrology analysis We observed four distinct patterns of taper surface material loss at our retrieval centre and we set out to characterize these types and relate them to patient, implant and clinical variables. The four groups of material loss patterns were defined as: (1) Low wear (n= 63), (2) Open-end band (n=32), (3) Stripped material loss (n=54) and (4) Coup-Countercoup (n=6) (Figure). The Interobserver Reliability Kappa score was 0.78 (p<0.001) indicating substantial agreement between the two examiners. Analysis of variables between the groups identified significantly different head sizes (highest: Group 2, p=0.000), corrosion severity (highest: Group 2, p=0.004) and time to revision (highest: Group 3, p=0.040). We identified four different material loss patterns each with its own mechanism. Corrosion was identified as the principal mechanism in Groups 1 and 3. Group 1 head-neck junctions are thought to have a better seal with less fluid ingress in the junction. Group 3 head-neck junctions are attacked by corrosion either circumferentially, or unilaterally, along the whole engagement length. Mechanically assisted corrosion was the principal mechanism in Group 2. The higher friction torque opens up the open-end part of the junction and the ingressing fluid accelerates the corrosion. Extensive fretting was also observed under the scanning electron microscope. Intra-operative surgical damage was identified as the principal mechanism in Group 4, with only 6 components. The patterns and the mechanisms of material loss at the head-neck junction contribute to the understanding of large head metal-on-metal hip replacements. As a result, better implants can be designed in the future. Clinically, these findings suggest that head size and head taper-trunnion fit are the main factors that determine the longevity of the head-neck junction. On the other hand, patients selection does not influence the integrity of the junction
    • 

    corecore