8,340 research outputs found
Shearing-Stress Measurements by use of a Heated Element
The rate of local heat transfer from a solid surface to a moving fluid is related to the local skin frinction. Measurements of the heat transmission from small elements embedded in the surface of a solid can thus be used to botain local skin-friction coefficients. This method was applied by Fage and Falkner for laminar boundary layers and by Ludwieg for turbulent boundary layers. The present report discussed the possible range of application of such an instrument in low- and high-speed flow and presents experimental data to show that a very simple instrument can be used to obtain laminar and turbulent skin-friction coefficients with a single calibration. The instrument consists of an ordinary hot-wire cemented into a groove in the surface. The heat loss from the wire is proportional to the cube root of the wall shearing stress, and the constant of proportionality may be found by one calibration, for example, in laminar flow
Letter from G. T. Skinner to Theophilus Brown Larimore
Letter from G. T. Skinner to Theophilus Brown Larimore. The three-page handwritten letter is dated 19 February 1913. A transcript of the letter is included in the item PDF
Local Volume Effects in the Generalized Pseudopotential Theory
The generalized pseudopotential theory (GPT) is a powerful method for
deriving real-space transferable interatomic potentials. Using a coarse-grained
electronic structure, one can explicitly calculate the pair ion-ion and
multi-ion interactions in simple and transition metals. Whilst successful in
determining bulk properties, in central force metals the GPT fails to describe
crystal defects for which there is a significant local volume change. A
previous paper [PhysRevLett.66.3036 (1991)] found that by allowing the GPT
total energy to depend upon some spatially-averaged local electron density, the
energetics of vacancies and surfaces could be calculated within experimental
ranges. In this paper, we develop the formalism further by explicitly
calculating the forces and stress tensor associated with this total energy. We
call this scheme the adaptive GPT (aGPT) and it is capable of both molecular
dynamics and molecular statics. We apply the aGPT to vacancy formation and
divacancy binding in hcp Mg and also calculate the local electron density
corrections to the bulk elastic constants and phonon dispersion for which there
is refinement over the baseline GPT treatment.Comment: 11 pages, 6 figure
The problem of shot selection in basketball
In basketball, every time the offense produces a shot opportunity the player
with the ball must decide whether the shot is worth taking. In this paper, I
explore the question of when a team should shoot and when they should pass up
the shot by considering a simple theoretical model of the shot selection
process, in which the quality of shot opportunities generated by the offense is
assumed to fall randomly within a uniform distribution. I derive an answer to
the question "how likely must the shot be to go in before the player should
take it?", and show that this "lower cutoff" for shot quality depends
crucially on the number of shot opportunities remaining (say, before the
shot clock expires), with larger demanding that only higher-quality shots
should be taken. The function is also derived in the presence of a
finite turnover rate and used to predict the shooting rate of an
optimal-shooting team as a function of time. This prediction is compared to
observed shooting rates from the National Basketball Association (NBA), and the
comparison suggests that NBA players tend to wait too long before shooting and
undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde
Imaging and burst location with the EXIST high-energy telescope
The primary instrument of the proposed EXIST mission is a coded mask high
energy telescope (the HET), that must have a wide field of view and extremely
good sensitivity. It will be crucial to minimize systematic errors so that even
for very long total integration times the imaging performance is close to the
statistical photon limit. There is also a requirement to be able to reconstruct
images on-board in near real time in order to detect and localize gamma-ray
bursts. This must be done while the spacecraft is scanning the sky. The
scanning provides all-sky coverage and is key to reducing systematic errors.
The on-board computational problem is made even more challenging for EXIST by
the very large number of detector pixels. Numerous alternative designs for the
HET have been evaluated. The baseline concept adopted depends on a unique coded
mask with two spatial scales. Monte Carlo simulations and analytic analysis
techniques have been used to demonstrate the capabilities of the design and of
the proposed two-step burst localization procedure
INTEGRAL timing and localization performance
In this letter we report on the accuracy of the attitude, misalignment, orbit
and time correlation which are used to perform scientific analyses of the
INTEGRAL data. The boresight attitude during science pointings has an accuracy
of 3 arcsec. At the center of the field, the misalignments have been calibrated
leading to a location accuracy of 4 to 40 arcsec for the different instruments.
The spacecraft position is known within 10 meters. The relative timing between
instruments could be reconstructed within 10 microsec and the absolute timing
within 40 microsec.Comment: 5 pages, 2 figures, accepted for publication in A+A letters, INTEGRAL
special issu
Low-Frequency Radio Transients in the Galactic Center
We report the detection of a new radio transient source, GCRT J1746-2757,
located only 1.1 degrees north of the Galactic center. Consistent with other
radio transients toward the Galactic center, this source brightened and faded
on a time scale of a few months. No X-ray counterpart was detected. We also
report new 0.33 GHz measurements of the radio counterpart to the X-ray
transient source, XTE J1748-288, previously detected and monitored at higher
radio frequencies. We show that the spectrum of XTE J1748-288 steepened
considerably during a period of a few months after its peak. We also discuss
the need for a more efficient means of finding additional radio transients
Io: IUE observations of its atmosphere and the plasma torus
Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent
- …