1,003 research outputs found

    Elliptic flow from event-by-event hydrodynamics

    Full text link
    We present an event-by-event hydrodynamical framework which takes into account the initial density fluctuations arising from a Monte Carlo Glauber model. The elliptic flow is calculated with the event plane method and a one-to-one comparison with the measured event plane v2v_2 is made. Both the centrality- and pTp_T-dependence of the v2v_2 are remarkably well reproduced. We also find that the participant plane is a quite good approximation for the event plane.Comment: 4 pages, 3 figures. Talk given at Quark Matter 2011, 22-28 May 2011, Annecy, Franc

    Jet-hadron correlations in STAR

    Full text link
    Advancements in full jet reconstruction have made it possible to use jets as triggers in azimuthal angular correlations to study the modification of hard-scattered partons in the medium created in ultrarelativistic heavy-ion collisions. This increases the range of parton energies accessible in these analyses and improves the signal-to-background ratio compared to dihadron correlations. Results of a systematic study of jet-hadron correlations in central Au-Au collisions at sqrt(s_NN) = 200 GeV are indicative of a broadening and softening of jets which interact with the medium. Furthermore, jet-hadron correlations suggest that the suppression of the associated hadron yield at high-pT is balanced in large part by low-pT enhancement.Comment: 4 pages, 2 figures, proceedings for Quark Matter 201

    Dijet Cross Section and Longitudinal Double Spin Asymmetry Measurements in Polarized Proton-proton Collisions at \sqrt{s}=200 GeV at STAR

    Full text link
    These proceedings show the preliminary results of the dijet cross sections and the dijet longitudinal double spin asymmetries A_LL in polarized proton-proton collisions at \sqrt{s} = 200 GeV at the mid-rapidity |eta| < 0.8. The integrated luminosity of 5.39 pb^{-1} collected during RHIC Run-6 was used in the measurements. The preliminary results are presented as functions of the dijet invariant mass M_jj. The dijet cross sections are in agreement with next-to-leading-order pQCD predictions. The A_LL is compared with theoretical predictions based on various parameterizations of polarized parton distributions of the proton. Projected precision of data analyzed to date from Run-9 are shown.Comment: 8 pages, 5 figures, Proceedings of the SPIN2010 conference (Juelich, Germany, 2010

    New limits on top squark NLSP from ATLAS 4.7 fb1fb^{-1} data

    Full text link
    Using the ATLAS 4.7 fb1fb^{-1} data on new physics search in the jets + \met channel, we obtain new limits on the lighter top squark (t~1\tilde t_1) considering all its decay modes assuming that it is the next to lightest supersymmetric particle (NLSP). If the decay \lstop \ra c \lspone dominates and the production of dark matter relic density is due to NLSP - LSP co-annihilation then the lower limit on \mlstop is 240 GeV. The limit changes to 200 GeV if the decay \lstop \ra b W \lspone dominates. Combining these results it follows that \lstop NLSP induced baryogenesis is now constrained more tightly.Comment: 9 pages, 2 figures, published in MPL

    Measurements in SUGRA Models with Large tan beta at LHC

    Full text link
    We present an example of a scenario of particle production and decay in supersymmetry models in which the supersymmetry breaking is transmitted to the observable world via gravitational interactions. The case is chosen so that there is a large production of tau leptons in the final state. It is characteristic of large tan beta in that decays into muons and electrons may be suppressed. It is shown that hadronic tau decays can be used to reconstruct final states.Comment: 15 pages, 12 figure

    Strangeness production in jets from p+p \sqrt{s} = 200 GeV collisions

    Full text link
    Measurements of strangeness production in jets help illuminate the QCD mechanisms in fragmentation. Furthermore, they provide a crucial baseline for heavy-ion studies where modifications in jet chemistry have recently been predicted. We present new results on strange particle production in jets from p+p \sqrt{s} = 200 GeV collisions measured by the STAR experiment. The momentum distributions of the \Lambda, \bar{\Lambda} and K0Short particles are obtained using various jet finding algorithms, and then compared to various models. Strange particle ratios in jets are obtained and compared to values obtained from the inclusive spectra. Finally, we show jets tagged with leading strange baryons and mesons, in order to investigate whether gluon or quark jets can be isolated in this way.Comment: 5 pages, 4 figures, Winter Workshop on Nuclear Dynamics 2010, Jamaic

    Wroclaw neutrino event generator

    Get PDF
    A neutrino event generator developed by the Wroclaw Neutrino Group is described. The physical models included in the generator are discussed and illustrated with the results of simulations. The considered processes are quasi-elastic scattering and pion production modelled by combining the Δ\Delta resonance excitation and deep inelastic scattering.Comment: Talk given at 2nd Scandanavian Neutrino Workshop (SNOW 2006), Stockholm, Sweden, 2-6 May 2006. 3 pages, 6 figure

    Gamma Rays from Clusters and Groups of Galaxies: Cosmic Rays versus Dark Matter

    Full text link
    Clusters of galaxies have not yet been detected at gamma-ray frequencies; however, the recently launched Fermi Gamma-ray Space Telescope, formerly known as GLAST, could provide the first detections in the near future. Clusters are expected to emit gamma rays as a result of (1) a population of high-energy primary and re-accelerated secondary cosmic rays (CR) fueled by structure formation and merger shocks, active galactic nuclei and supernovae, and (2) particle dark matter (DM) annihilation. In this paper, we ask the question of whether the Fermi telescope will be able to discriminate between the two emission processes. We present data-driven predictions for a large X-ray flux limited sample of galaxy clusters and groups. We point out that the gamma ray signals from CR and DM can be comparable. In particular, we find that poor clusters and groups are the systems predicted to have the highest DM to CR emission at gamma-ray energies. Based on detailed Fermi simulations, we study observational handles that might enable us to distinguish the two emission mechanisms, including the gamma-ray spectra, the spatial distribution of the signal and the associated multi-wavelength emissions. We also propose optimal hardness ratios, which will help to understand the nature of the gamma-ray emission. Our study indicates that gamma rays from DM annihilation with a high particle mass can be distinguished from a CR spectrum even for fairly faint sources. Discriminating a CR spectrum from a light DM particle will be instead much more difficult, and will require long observations and/or a bright source. While the gamma-ray emission from our simulated clusters is extended, determining the spatial distribution with Fermi will be a challenging task requiring an optimal control of the backgrounds.Comment: revised to match resubmitted version, 35 pages, 16 figures: results unchanged, some discussion added and unnecessary text and figures remove

    UrQMD calculations of two-pion HBT correlations in p+p and Pb+Pb collisions at LHC energies

    Full text link
    Two-pion Hanbury-Brown-Twiss (HBT) correlations for p+p and central Pb+Pb collisions at the Large-Hadron-Collider (LHC) energies are investigated with the ultra-relativistic quantum molecular dynamics model combined with a correlation afterburner. The transverse momentum dependence of the Pratt-Bertsch HBT radii RlongR_{long}, RoutR_{out}, and RsideR_{side} is extracted from a three-dimensional Gaussian fit to the correlator in the longitudinal co-moving system. In the p+p case, the dependence of correlations on the charged particle multiplicity and formation time is explored and the data allows to constrain the formation time in the string fragmentation to τf0.8\tau_f \leq 0.8 fm/c. In the Pb+Pb case, it is found that RoutR_{out} is overpredicted by nearly 50%. The LHC results are also compared to data from the STAR experiment at RHIC. For both energies we find that the calculated Rout/RsideR_{out}/R_{side} ratio is always larger than data, indicating that the emission in the model is less explosive than observed in the data.Comment: 9 pages, 4 figures, 1 table. Talk given by Qingfeng Li at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Self-Consistency Requirement in High-Energy Nuclear Scattering

    Get PDF
    Practically all serious calculations of exclusive particle production in ultra-relativistic nuclear or hadronic interactions are performed in the framework of Gribov-Regge theory or the eikonalized parton model scheme. It is the purpose of this paper to point out serious inconsistencies in the above-mentioned approaches. We will demonstrate that requiring theoretical self-consistency reduces the freedom in modeling high energy nuclear scattering enormously. We will introduce a fully self-consistent formulation of the multiple-scattering scheme in the framework of a Gribov-Regge type effective theory. In addition, we develop new computational techniques which allow for the first time a satisfactory solution of the problem in the sense that calculation s of observable quantities can be done strictly within a self-consistent formalism.Comment: 7 pages, 6 figure
    corecore