8 research outputs found

    Additional file 2: Figure S1. of High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs

    No full text
    The sum of abundances of sequences matching to all new cassava miRNAs identified in this study. Precursors are plotted against their locations and the overall sRNA distribution within a 3 kb vicinity in the genomic chunk. The most abundant sequence is denoted with a red arrow; other sRNAs of different sizes are also shown. Some miRNAs were mapped to loci with high levels of sRNAs as well as to loci with low levels of sRNAs. (PPTX 270 kb

    The Behaviour of Players behind Poker Tables

    No full text
    The bachelor thesis deals with the behaviour of poker players, which can be encountered in the game of poker. In my work I am gradually engaged in non-verbal communication, verbal communication and the ethics of poker players. In the section of non-verbal communication, I analyse individual parts of the body from the most important for reading to the least important. I also deal with psychological effects that can greatly influence the behaviour of the players. In the section of verbal communication, I focus mainly on what verbal communication in poker can serve and how to use this knowledge. In the last part I present the issue of ethical behaviour. In the practical part I use the knowledge from my own research as well as the knowledge of the players who were willing to share with me their knowledge. I also use the analysis of the video which is available on YouTube

    Additional file 3: Figure S2. of High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs

    No full text
    Predicted secondary structure of miRNA precursors identified in this study. Most of the miRNAs were from unbranched terminal loops as while a few had branched terminal loops. The miRNAs are colored in red. (PPTX 473 kb

    DataSheet_2_Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize.pdf

    No full text
    Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 – 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.</p

    DataSheet_1_Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize.pdf

    No full text
    Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 – 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.</p

    DataSheet_3_Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize.pdf

    No full text
    Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 – 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.</p

    DataSheet_5_Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize.pdf

    No full text
    Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 – 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.</p

    DataSheet_4_Accelerating haploid induction rate and haploid validation through marker-assisted selection for qhir1 and qhir8 in maize.pdf

    No full text
    Doubled haploid (DH) technology becomes more routinely applied in maize hybrid breeding. However, some issues in haploid induction and identification persist, requiring resolution to optimize DH production. Our objective was to implement simultaneous marker-assisted selection (MAS) for qhir1 (MTL/ZmPLA1/NLD) and qhir8 (ZmDMP) using TaqMan assay in F2 generation of four BHI306-derived tropical × temperate inducer families. We also aimed to assess their haploid induction rate (HIR) in the F3 generation as a phenotypic response to MAS. We highlighted remarkable increases in HIR of each inducer family. Genotypes carrying qhir1 and qhir8 exhibited 1 – 3-fold higher haploid frequency than those carrying only qhir1. Additionally, the qhir1 marker was employed for verifying putative haploid seedlings at 7 days after planting. Flow cytometric analysis served as the gold standard test to assess the accuracy of the R1-nj and the qhir1 marker. The qhir1 marker showed high accuracy and may be integrated in multiple haploid identifications at early seedling stage succeeding pre-haploid sorting via R1-nj marker.</p
    corecore