67 research outputs found

    Illumination diagnosis for retrieval of reflections from ambient-noise seismic data in the Siilinjärvi mining site, Finland

    Get PDF
    Reflection seismic methods are becoming popular in mineral exploration, because they allow high-resolution delineation of the exploration targets, even at great depths. Seismic interferometry can be used to retrieve reflections from passive seismic data, removing the need for active seismic sources and, therefore, reducing the cost and environmental impact of exploration. The retrieval of reflections can be challenging, since passive seismic records are typically dominated by surface waves. Therefore, illumination diagnosis, a method which allows the isolation of the portions of the passive data where body-wave signals are stronger, can be a valuable step that improves the quality of the reflections retrieved from seismic interferometry and reduces the overall computational cost of the processing stage. Here, we validate the performance of the method to effectively isolate the portions of the passive data dominated by body waves and apply it on an ambient-noise seismic dataset acquired in the Siilinjärvi mining site in Finland

    Application of surface-wave tomography to mineral exploration : a case study from Siilinjarvi, Finland

    Get PDF
    In order to assess the feasibility and validity of surface-wave tomography as a tool for mineral exploration, we present an active seismic three-dimensional case study from the Siilinjarvi mine in Eastern Finland. The aim of the survey is to identify the formation carrying the mineralization in an area south of the main pit, which will be mined in the future. Before acquiring the data, we performed an accurate survey design to maximize data coverage and minimize the time for deployment and recollection of the equipment. We extract path-averaged Rayleigh-wave phase-velocity dispersion curves by means of a two-station method. We invert them using a computationally efficient tomographic code which does not require the computation of phase-velocity maps and inverts directly for one-dimensional S-wave velocity models. The retrieved velocities are in good agreement with the data from a borehole in the vicinity, and the pseudo three-dimensional S-wave velocity volume allows us to identify the geological contact between the formation hosting most of the mineralization and the surrounding rock. We conclude that the proposed method is a valid tool, given the small amount of equipment used and the acceptable amount of time required to process the data.Peer reviewe

    SND@LHC: The Scattering and Neutrino Detector at the LHC

    Get PDF
    SND@LHC is a compact and stand-alone experiment designed to perform measurements with neutrinos produced at the LHC in the pseudo-rapidity region of 7.2<η<8.4{7.2 < \eta < 8.4}. The experiment is located 480 m downstream of the ATLAS interaction point, in the TI18 tunnel. The detector is composed of a hybrid system based on an 830 kg target made of tungsten plates, interleaved with emulsion and electronic trackers, also acting as an electromagnetic calorimeter, and followed by a hadronic calorimeter and a muon identification system. The detector is able to distinguish interactions of all three neutrino flavours, which allows probing the physics of heavy flavour production at the LHC in the very forward region. This region is of particular interest for future circular colliders and for very high energy astrophysical neutrino experiments. The detector is also able to search for the scattering of Feebly Interacting Particles. In its first phase, the detector will operate throughout LHC Run 3 and collect a total of 250 fb1\text{fb}^{-1}

    Power, Food and Agriculture: Implications for Farmers, Consumers and Communities

    Full text link

    Application of surface-wave tomography to mineral exploration: a case study from Siilinjärvi, Finland

    No full text
    In order to assess the feasibility and validity of surface-wave tomography as a toolfor mineral exploration, we present an active seismic three-dimensional case studyfrom the Siilinj ̈arvi mine in Eastern Finland. The aim of the survey is to identify theformation carrying the mineralization in an area south of the main pit, which will bemined in the future. Before acquiring the data, we performed an accurate survey designto maximize data coverage and minimize the time for deployment and recollectionof the equipment. We extract path-averaged Rayleigh-wave phase-velocity dispersioncurves by means of a two-station method. We invert them using a computationallyefficient tomographic code which does not require the computation of phase-velocitymaps and inverts directly for one-dimensional S-wave velocity models. The retrievedvelocities are in good agreement with the data from a borehole in the vicinity, and thepseudo three–dimensional S-wave velocity volume allows us to identify the geologicalcontact between the formation hosting most of the mineralization and the surroundingrock. We conclude that the proposed method is a valid tool, given the small amountof equipment used and the acceptable amount of time required to process the data

    Current advances in skin-on-a-chip models for drug testing

    No full text
    2018-2019 > Academic research: refereed > Publication in refereed journal202007 bcrcVersion of RecordOthersP0006214Publishe
    corecore