252 research outputs found

    The study of multifragmentation around transition energy in intermediate energy heavy-ion collisions

    Full text link
    Fragmentation of light charged particles is studied for various systems at different incident energies between 50 and 1000 MeV/nucleon. We analyze fragment production at incident energies above, below and at transition energies using the isospin dependent quantum molecular dynamics(IQMD) model. The trends observed for the fragment production and rapidity distributions depend upon the incident energy, size of the fragments, composite mass of the reacting system as well as on the impact parameter of the reaction. The free nucleons and light charged particles show continous homogeneous changes irrespective of the transition energies indicating that there is no relation between the transition energy and production of the free as well as light charged particles

    Influence of density dependent symmetry energy on Elliptical flow

    Full text link
    The effect of density dependent symmetry energy on elliptical flow is studied using isospin-dependent quantum molecular dynamics model(IQMD). We have used the reduced isospin- dependent cross-section with hard(H) equation of state to study the sensitivity of elliptical flow towards symmetry energy in the energy range of 50 - 1000 MeV/nucleon. The elliptical flow becomes zero at a particular energy termed as transition energy. A systematic effort has been made to pin down the transition energy for the density dependent symmetry energy

    Investigation of current-voltage characteristics of Ni/GaN Schottky barrier diodes for potential hemt applications

    Get PDF
    In the present work, the I-V characteristics of Ni/GaN Schottky diodes have been studied. The Schottky diodes, having different sizes using Ni/Au and ohmic contacts using Ti/Al/Ni/Au were made on n-GaN. The GaN was epitaxially grown on c-plane sapphire by metal organic chemical vapor deposition (MOCVD) technique and had a thickness of about 3.7 μm. The calculated ideality factor and barrier height from current-voltage (I-V) characteristics (at 300 K) for two GaN Schottky diodes were close to ~1.3 and ~ 0.8 eV respectively. A high reverse leakage current in the order of 10 – 4A/cm2 (at – 1 V) was observed in both diodes. A careful analysis of forward bias I-V characteristics showed very high series resistance and calculation for ideality factor indicated presence of other current transport mechanism apart from thermionic model at room temperature. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2202

    Effect of electrode location and thickness ratio of flange and web on I cross section piezoelectric cantilever beam for its actuation capability

    Get PDF
    Present work deals with the numerical investigation of a cantilever beam having I cross section made up of piezoelectric material for its actuation capability. The beam is modeled under the assumption of Euler’s Bernoulli equation. Eight cases are considered for different electrode locations. The beam was subjected to voltage loads at different locations. It was noticed that tip deflection increases with increasing applied voltage across the electrodes. Maximum tip deflection was achieved with the increase in voltage with particular electrode arrangement. In this report we have also demonstrated that for downward tip deflection, there are two values of thickness ratio of flange and web for a given tip deflection at a given applied voltage

    A Trio-Method for Retinal Vessel Segmentation using Image Processing

    Full text link
    Inner Retinal neurons are a most essential part of the retina and they are supplied with blood via retinal vessels. This paper primarily focuses on the segmentation of retinal vessels using a triple preprocessing approach. DRIVE database was taken into consideration and preprocessed by Gabor Filtering, Gaussian Blur, and Edge Detection by Sobel and Pruning. Segmentation was driven out by 2 proposed U-Net architectures. Both the architectures were compared in terms of all the standard performance metrics. Preprocessing generated varied interesting results which impacted the results shown by the UNet architectures for segmentation. This real-time deployment can help in the efficient pre-processing of images with better segmentation and detection.Comment: Accepted at 26th UK Conference on Medical Image Understanding and Analysis (MIUA-2022) (Abstract short paper

    Numerical analysis of temperature distribution in sliding contacts of pin on disc model

    Get PDF
    Pin on disc is a tribosystem confirming to ASTM G99, is employed in this work. It consists of deformable cylindrical disc and rigid pin with friction. Coating of Inconel 712 is added on stainless steel disc and pin is made of SiC3. The FEM software ANSYS R19.1 is employed for simulation of temperature distribution produced due to friction between pin on disc. Stress distribution is calculated from result produced between pin and disc interface due to applied contact load on pin. The governing equation is mentioned in introduction section. Result showing as contact load on pin increases maximum principle stress is increases. Temperature rises in direct proportion with sliding distance and time. Simulation result validates and confirmed with experimental results
    corecore