36 research outputs found

    Quantum Mechanics/Molecular Mechanics Modeling of Covalent Addition between EGFR–Cysteine 797 and <i>N</i>‑(4-Anilinoquinazolin-6-yl) Acrylamide

    No full text
    Irreversible epidermal growth factor receptor (EGFR) inhibitors can circumvent resistance to first-generation ATP-competitive inhibitors in the treatment of nonsmall-cell lung cancer. They covalently bind a noncatalytic cysteine (Cys797) at the surface of EGFR active site by an acrylamide warhead. Herein, we used a hybrid quantum mechanics/molecular mechanics (QM/MM) potential in combination with umbrella sampling in the path-collective variable space to investigate the mechanism of alkylation of Cys797 by the prototypical covalent inhibitor <i>N</i>-(4-anilinoquinazolin-6-yl) acrylamide. Calculations show that Cys797 reacts with the acrylamide group of the inhibitor through a direct addition mechanism, with Asp800 acting as a general base/general acid in distinct steps of the reaction. The obtained reaction free energy is negative (Δ<i>A</i> = −12 kcal/mol) consistent with the spontaneous and irreversible alkylation of Cys797 by <i>N</i>-(4-anilinoquinazolin-6-yl) acrylamide. Our calculations identify desolvation of Cys797 thiolate anion as a key step of the alkylation process, indicating that changes in the intrinsic reactivity of the acrylamide would have only a minor impact on the inhibitor potency

    Structure-Based Virtual Screening of MT<sub>2</sub> Melatonin Receptor: Influence of Template Choice and Structural Refinement

    No full text
    Developing GPCR homology models for structure-based virtual screening requires the choice of a suitable template and refinement of binding site residues. We explored this systematically for the MT<sub>2</sub> melatonin receptor, with the aim to build a receptor homology model that is optimized for the enrichment of active melatoninergic ligands. A set of 12 MT<sub>2</sub> melatonin receptor models was built using different GPCR X-ray structural templates and submitted to a virtual screening campaign on a set of compounds composed of 29 known melatonin receptor ligands and 2560 drug-like decoys. To evaluate the effect of including a priori information in receptor models, 12 representative melatonin receptor ligands were placed into the MT<sub>2</sub> receptor models in poses consistent with known mutagenesis data and with assessed pharmacophore models. The receptor structures were then adapted to the ligands by induced-fit docking. Most of the 144 ligand-adapted MT<sub>2</sub> receptor models showed significant improvements in screening enrichments compared to the unrefined homology models, with some template/refinement combinations giving excellent enrichment factors. The discriminating ability of the models was further tested on the 29 active ligands plus a set of 21 inactive or low-affinity compounds from the same chemical classes. Rotameric states of side chains for some residues, presumed to be involved in the binding process, were correlated with screening effectiveness, suggesting the existence of specific receptor conformations able to recognize active compounds. The top MT<sub>2</sub> receptor model was able to identify 24 of 29 active ligands among the first 2% of the screened database. This work provides insights into the use of refined GPCR homology models for virtual screening

    MT<sub>1</sub> and MT<sub>2</sub> Melatonin Receptors: Ligands, Models, Oligomers, and Therapeutic Potential

    No full text
    Numerous physiological functions of the pineal gland hormone melatonin are mediated via activation of two G-protein-coupled receptors, MT<sub>1</sub> and MT<sub>2</sub>. The melatonergic drugs on the market, ramelteon and agomelatine, as well as the most advanced drug candidates under clinical evaluation, tasimelteon and TIK-301, are high-affinity nonselective MT<sub>1</sub>/MT<sub>2</sub> agonists. A great number of MT<sub>2</sub>-selective ligands and, more recently, several MT<sub>1</sub>-selective agents have been reported to date. Herein, we review recent advances in the field focusing on high-affinity agonists and antagonists and those displaying selectivity toward MT<sub>1</sub> and MT<sub>2</sub> receptors. Moreover, the existing models of MT<sub>1</sub> and MT<sub>2</sub> receptors as well as the current status in the emerging field of melatonin receptor oligomerization are critically discussed. In addition to the already existing indications, such as insomnia, circadian sleep disorders, and depression, new potential therapeutic applications of melatonergic ligands including cardiovascular regulation, appetite control, tumor growth inhibition, and neurodegenerative diseases are presented

    Quantum Mechanics/Molecular Mechanics Modeling of Fatty Acid Amide Hydrolase Reactivation Distinguishes Substrate from Irreversible Covalent Inhibitors

    No full text
    Carbamate and urea derivatives are important classes of fatty acid amide hydrolase (FAAH) inhibitors that carbamoylate the active-site nucleophile Ser241. In the present work, the reactivation mechanism of carbamoylated FAAH is investigated by means of a quantum mechanics/molecular mechanics (QM/MM) approach. The potential energy surfaces for decarbamoylation of FAAH covalent adducts, derived from the <i>O</i>-aryl carbamate URB597 and from the <i>N</i>-piperazinylurea JNJ1661610, were calculated and compared to that for deacylation of FAAH acylated by the substrate oleamide. Calculations show that a carbamic group bound to Ser241 prevents efficient stabilization of transition states of hydrolysis, leading to large increments in the activation barrier. Moreover, the energy barrier for the piperazine carboxylate was significantly lower than that for the cyclohexyl carbamate derived from URB597. This is consistent with experimental data showing slowly reversible FAAH inhibition for the <i>N</i>-piperazinylurea inhibitor and irreversible inhibition for URB597

    Metadynamics Simulations Distinguish Short- and Long-Residence-Time Inhibitors of Cyclin-Dependent Kinase 8

    No full text
    The duration of drug efficacy in vivo is a key aspect primarily addressed during the lead optimization phase of drug discovery. Hence, the availability of robust computational approaches that can predict the residence time of a compound at its target would accelerate candidate selection. Nowadays the theoretical prediction of this parameter is still very challenging. Starting from methods reported in the literature, we set up and validated a new metadynamics (META-D)-based protocol that was used to rank the experimental residence times of 10 arylpyrazole cyclin-dependent kinase 8 (CDK8) inhibitors for which target-bound X-ray structures are available. The application of reported methods based on the detection of the escape from the first free energy well gave a poor correlation with the experimental values. Our protocol evaluates the energetics of the whole unbinding process, accounting for multiple intermediates and transition states. Using seven collective variables (CVs) encoding both roto-translational and conformational motions of the ligand, a history-dependent biasing potential is deposited as a sum of constant-height Gaussian functions until the ligand reaches an unbound state. The time required to achieve this state is proportional to the integral of the deposited potential over the CV hyperspace. Average values of this time, for replicated META-D simulations, provided an accurate classification of CDK8 inhibitors spanning short, medium, and long residence times

    Fatty Acid Amide Hydrolase (FAAH), Acetylcholinesterase (AChE), and Butyrylcholinesterase (BuChE): Networked Targets for the Development of Carbamates as Potential Anti-Alzheimer’s Disease Agents

    No full text
    The modulation of the endocannabinoid system is emerging as a viable avenue for the treatment of neurodegeneration, being involved in neuroprotective and anti-inflammatory processes. In particular, indirectly enhancing endocannabinoid signaling to therapeutic levels through FAAH inhibition might be beneficial for neurodegenerative disorders such as Alzheimer’s disease, effectively preventing or slowing the progression of the disease. Hence, in the search for a more effective treatment for Alzheimer’s disease, in this paper, the multitarget-directed ligand paradigm was applied to the design of carbamates able to simultaneously target the recently proposed endocannabinoid system and the classic cholinesterase system, and achieve effective dual FAAH/cholinesterase inhibitors. Among the two series of synthesized compounds, while some derivatives proved to be extremely potent on a single target, compounds <b>9</b> and <b>19</b> were identified as effective dual FAAH/ChE inhibitors, with well-balanced nanomolar activities. Thus, <b>9</b> and <b>19</b> might be considered as new promising candidates for Alzheimer’s disease treatment

    Fatty Acid Amide Hydrolase (FAAH), Acetylcholinesterase (AChE), and Butyrylcholinesterase (BuChE): Networked Targets for the Development of Carbamates as Potential Anti-Alzheimer’s Disease Agents

    No full text
    The modulation of the endocannabinoid system is emerging as a viable avenue for the treatment of neurodegeneration, being involved in neuroprotective and anti-inflammatory processes. In particular, indirectly enhancing endocannabinoid signaling to therapeutic levels through FAAH inhibition might be beneficial for neurodegenerative disorders such as Alzheimer’s disease, effectively preventing or slowing the progression of the disease. Hence, in the search for a more effective treatment for Alzheimer’s disease, in this paper, the multitarget-directed ligand paradigm was applied to the design of carbamates able to simultaneously target the recently proposed endocannabinoid system and the classic cholinesterase system, and achieve effective dual FAAH/cholinesterase inhibitors. Among the two series of synthesized compounds, while some derivatives proved to be extremely potent on a single target, compounds <b>9</b> and <b>19</b> were identified as effective dual FAAH/ChE inhibitors, with well-balanced nanomolar activities. Thus, <b>9</b> and <b>19</b> might be considered as new promising candidates for Alzheimer’s disease treatment

    Atropisomerism and Conformational Equilibria: Impact on PI3Kδ Inhibition of 2‑((6-Amino‑9<i>H</i>‑purin-9-yl)methyl)-5-methyl-3‑(<i>o</i>‑tolyl)quinazolin-4(3<i>H</i>)‑one (IC87114) and Its Conformationally Restricted Analogs

    No full text
    IC87114 [compound <b>1</b>, (2-((6-amino-9<i>H</i>-purin-9-yl)­methyl)-5-methyl-3-(<i>o</i>-tolyl)­quinazolin-4­(3<i>H</i>)-one)] is a potent PI3K inhibitor selective for the δ isoform. As predicted by molecular modeling calculations, rotation around the bond connecting the quinazolin-4­(3<i>H</i>)-one nucleus to the <i>o</i>-tolyl is sterically hampered, which leads to separable conformers with axial chirality (i.e., atropisomers). After verifying that the a<i>S</i> and a<i>R</i> isomers of compound <b>1</b> do not interconvert in solution, we investigated how biological activity is influenced by axial chirality and conformational equilibrium. The a<i>S</i> and a<i>R</i> atropisomers of <b>1</b> were equally active in the PI3Kδ assay. Conversely, the introduction of a methyl group at the methylene hinge connecting the 6-amino-9<i>H</i>-purin-9-yl pendant to the quinazolin-4­(3<i>H</i>)-one nucleus of both a<i>S</i> and a<i>R</i> isomers of <b>1</b> had a critical effect on the inhibitory activity, indicating that modulation of the conformational space accessible for the two bonds departing from the central methylene considerably affects the binding of compound <b>1</b> analogues to PI3Kδ enzyme

    Atropisomerism and Conformational Equilibria: Impact on PI3Kδ Inhibition of 2‑((6-Amino‑9<i>H</i>‑purin-9-yl)methyl)-5-methyl-3‑(<i>o</i>‑tolyl)quinazolin-4(3<i>H</i>)‑one (IC87114) and Its Conformationally Restricted Analogs

    Get PDF
    IC87114 [compound <b>1</b>, (2-((6-amino-9<i>H</i>-purin-9-yl)­methyl)-5-methyl-3-(<i>o</i>-tolyl)­quinazolin-4­(3<i>H</i>)-one)] is a potent PI3K inhibitor selective for the δ isoform. As predicted by molecular modeling calculations, rotation around the bond connecting the quinazolin-4­(3<i>H</i>)-one nucleus to the <i>o</i>-tolyl is sterically hampered, which leads to separable conformers with axial chirality (i.e., atropisomers). After verifying that the a<i>S</i> and a<i>R</i> isomers of compound <b>1</b> do not interconvert in solution, we investigated how biological activity is influenced by axial chirality and conformational equilibrium. The a<i>S</i> and a<i>R</i> atropisomers of <b>1</b> were equally active in the PI3Kδ assay. Conversely, the introduction of a methyl group at the methylene hinge connecting the 6-amino-9<i>H</i>-purin-9-yl pendant to the quinazolin-4­(3<i>H</i>)-one nucleus of both a<i>S</i> and a<i>R</i> isomers of <b>1</b> had a critical effect on the inhibitory activity, indicating that modulation of the conformational space accessible for the two bonds departing from the central methylene considerably affects the binding of compound <b>1</b> analogues to PI3Kδ enzyme

    Amino Acid Derivatives as Palmitoylethanolamide Prodrugs: Synthesis, <i>In Vitro</i> Metabolism and <i>In Vivo</i> Plasma Profile in Rats

    No full text
    <div><p>Palmitoylethanolamide (PEA) has antinflammatory and antinociceptive properties widely exploited in veterinary and human medicine, despite its poor pharmacokinetics. Looking for prodrugs that could progressively release PEA to maintain effective plasma concentrations, we prepared carbonates, esters and carbamates at the hydroxyl group of PEA. Chemical stability (pH 7.4) and stability in rat plasma and liver homogenate were evaluated by in vitro assays. Carbonates and carbamates resulted too labile and too resistant in plasma, respectively. Ester derivatives, prepared by conjugating PEA with various amino acids, allowed to modulate the kinetics of PEA release in plasma and stability in liver homogenate. L-Val-PEA, with suitable PEA release in plasma, and D-Val-PEA, with high resistance to hepatic degradation, were orally administered to rats and plasma levels of prodrugs and PEA were measured at different time points. Both prodrugs showed significant release of PEA, but provided lower plasma concentrations than those obtained with equimolar doses of PEA. Amino-acid esters of PEA are a promising class to develop prodrugs, even if they need further chemical optimization.</p></div
    corecore