57,549 research outputs found

    Effect of nanosize BaZrO3 inclusions on vortex parameters in YBaCuO

    Full text link
    We report on the field dependence of the microwave complex resistivity data in YBa2_2Cu3_3O7−x_{7-x}/BaZrO3_3 films grown by PLD at various BaZrO3_3 content. The data, analyzed within a recently developed general framework for the mixed-state microwave response of superconductors, yield the field dependence of the fluxon parameters such as the vortex viscosity and the pinning constant. We find that pinning undergoes a change of regime when the BaZrO3_3 content in the target increases from 2.5 mol.% to 5 mol.%. Simultaneously, the vortex viscosity becomes an increasing function of the applied magnetic field. We propose a scenario in which flux lines are pinned as bundles, and a crossover from dilute point pins to dense c-axis correlated defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data are inconsistent with vortices occupying mainly the BaZrO3_3 sites at low fields, and suggest instead that vortices occupy both BaZrO3_3 sites and interstitials in the YBa2_2Cu3_3O7−x_{7-x} matrix, even at low fields.Comment: Presented at EUCAS 2009, to be published in J. Phys.:Conf. Serie

    Anisotropic renormalized fluctuations in the microwave resistivity in YBCO

    Full text link
    We discuss the excess conductivity above Tc due to renormalized order-parameter fluctuations in YBCO at microwave frequencies. We calculate the effects of the uniaxial anisotropy on the renormalized fluctuations in the Hartree approximation, extending the isotropic theory developed by Dorsey [Phys. Rev. B 43, 7575 (1991)]. Measurements of the real part of the microwave resistivity at 24 and 48 GHz and of the dc resistivity are performed on different YBCO films. The onset of the superconducting transition and the deviation from the linear temperature behavior above Tc can be fully accounted for by the extended theory. According to the theoretical calculation here presented, a departure from gaussian toward renormalized fluctuations is observed. Very consistent values of the fundamental parameters (critical temperature, coherence lenghts, penetration depth) of the superconducting state are obtained.Comment: RevTex, 8 pages with 5 figures included, to be published in Physical Review

    Anisotropy and directional pinning in YBaCuO with BaZrO3 nanorods

    Full text link
    Measurements of anisotropic transport properties (dc and high-frequency regime) of driven vortex matter in YBa2_2Cu3_3O7−x_{7-x} with elongated strong-pinning sites (c-axis aligned, self-assembled BaZrO3_3 nanorods) are used to demonstrate that the effective-mass angular scaling takes place only in intrinsic physical quantities (flux-flow resistivity), and not in pinning-related Labusch parameter and critical currents. Comparison of the dynamics at different time scales shows evidence for a transition of the vortex matter toward a Mott phase, driven by the presence of nanorods. The strong pinning in dc arises partially from a dynamic effect.Comment: 4 pages, 4 figures. Accepted for publication on Applied Physics Letters. With respect to v1: changed title, slightly shortene

    Mixed-state microwave response in superconducting cuprates

    Full text link
    We report measurements of the magnetic-field induced microwave complex resistivity in REBa2_{2}Cu3_{3}O7−δ_{7-\delta} thin films, with RE = Y, Sm. Measurements are performed at 48 GHz by means of a resonant cavity in the end-wall-replacement configuration. The magnetic field dependence is investigated by applying a moderate (0.8 T) magnetic field along the c-axis. The measured vortex state complex resistivity in YBa2_{2}Cu3_{3}O7−δ_{7-\delta} and SmBa2_{2}Cu3_{3}O7−δ_{7-\delta} is analyzed within the well-known models for vortex dynamics. It is shown that attributing the observed response to vortex motion alone leads to inconsistencies in the as-determined vortex parameters (such as the vortex viscosity and the pinning constant). By contrast, attributing the entire response to field-induced pair breaking leads to a nearly quantitative description of the data.Comment: 6 pages, 4 figures, to be published in J. Supercond. as proceedings of 8th HTSHFF (May 26th-29th, 2004, Begur, Spain

    Populações de plantas e adubação orgânica em solo degradado na cultura do amendoim

    Get PDF
    bitstream/CNPA/19705/1/BOLETIM51.pd

    Nonlinear c-axis transport in Bi_2Sr_2CaCu_2O_(8+d) from two-barrier tunneling

    Full text link
    Motivated by the peculiar features observed through intrinsic tunneling spectroscopy of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} mesas in the normal state, we have extended the normal state two-barrier model for the c-axis transport [M. Giura et al., Phys. Rev. B {\bf 68}, 134505 (2003)] to the analysis of dI/dVdI/dV curves. We have found that the purely normal-state model reproduces all the following experimental features: (a) the parabolic VV-dependence of dI/dVdI/dV in the high-TT region (above the conventional pseudogap temperature), (b) the emergence and the nearly voltage-independent position of the "humps" from this parabolic behavior lowering the temperature, and (c) the crossing of the absolute dI/dVdI/dV curves at a characteristic voltage V×V^\times. Our findings indicate that conventional tunneling can be at the origin of most of the uncommon features of the c axis transport in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We have compared our calculations to experimental data taken in severely underdoped and slightly underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} small mesas. We have found good agreement between the data and the calculations, without any shift of the calculated dI/dV on the vertical scale. In particular, in the normal state (above T∗T^\ast) simple tunneling reproduces the experimental dI/dV quantitatively. Below T∗T^\ast quantitative discrepancies are limited to a simple rescaling of the voltage in the theoretical curves by a factor ∼\sim2. The need for such modifications remains an open question, that might be connected to a change of the charge of a fraction of the carriers across the pseudogap opening.Comment: 7 pages, 5 figure

    Quantum anisotropic Heisenberg chains with superlattice structure: a DMRG study

    Full text link
    Using the density matrix renormalization group technique, we study spin superlattices composed of a repeated pattern of two spin-1/2 XXZ chains with different anisotropy parameters. The magnetization curve can exhibit two plateaus, a non trivial plateau with the magnetization value given by the relative sizes of the sub-chains and another trivial plateau with zero magnetization. We find good agreement of the value and the width of the plateaus with the analytical results obtained previously. In the gapless regions away from the plateaus, we compare the finite-size spin gap with the predictions based on bosonization and find reasonable agreement. These results confirm the validity of the Tomonaga-Luttinger liquid superlattice description of these systems.Comment: 6 pages, 6 figure
    • …
    corecore