9 research outputs found

    Tuning Resistive Switching On Single-pulse Doped Multilayer Memristors

    No full text
    Short-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO2) film - here called single-pulse doped multilayers - are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO2 films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation. The increase in volume of the embedded Al2O3 plays a crucial role in tuning the conductance of devices, as well as the switching bias. The stacking of these oxide compounds and their use in electrical devices is investigated with respect to possible crystalline phases and local compound formation via chemical recombination. It is shown that our method can be used to produce compounds that cannot be synthesized a priori by direct ALD growth procedures but are of interest due to specific properties such as thermal or chemical stability, electrical resistivity or electric field polarization possibilities. The monolayer doping discussed here impacts considerably on the broadening of the spectrum of performance and technological applications of ALD-based memristors, allowing for additional degrees of freedom in the engineering of oxide devices. © 2013 IOP Publishing Ltd.243Levi, B.G., (2007) Phys. Today, 60 (6), p. 23. , 10.1063/1.2754590 0031-9228Eckstein, J.N., Oxide interfaces: Watch out for the lack of oxygen (2007) Nature Materials, 6 (7), pp. 473-474. , DOI 10.1038/nmat1944, PII NMAT1944Smadici, S., Lee, J.C.T., Wang, S., Abbamonte, P., Logvenov, G., Gozar, A., Cavellin, C.D., Bozovic, I., (2009) Phys. Rev. Lett., 102 (10). , 10.1103/PhysRevLett.102.107004 0031-9007 107004Schooley, J.F., Hosler, W.R., Cohen, M.L., (1964) Phys. Rev. Lett., 12 (17), p. 474. , 10.1103/PhysRevLett.12.474 0031-9007Koida, T., Lippmaa, M., Fukumura, T., Itaka, K., Matsumoto, Y., Kawasaki, M., Koinuma, H., (2002) Phys. Rev., 66 (14). , 10.1103/PhysRevB.66.144418 0163-1829 B 144418Ogawa, N., Satoh, T., Ogimoto, Y., Miyano, K., (2008) Phys. Rev., 78 (21). , 10.1103/PhysRevB.78.212409 1098-0121 B 212409Nanda, B.R.K., Satpathy, S., (2008) Phys. Rev. Lett., 101 (12). , 10.1103/PhysRevLett.101.127201 0031-9007 127201Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, O., Triscone, J.-M., Local, nonvolatile electronic writing of epitaxial Pb(Zr 0.52Ti0.48)O3/SrRuO=3 heterostructures (1997) Science, 276 (5315), pp. 1100-1103. , DOI 10.1126/science.276.5315.1100Cohen Ronald, E., Origin of ferroelectricity in perovskite oxides (1992) Nature, 358 (6382), pp. 136-138. , DOI 10.1038/358136a0Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Schlom, D.G., Room-temperature ferroelectricity in strained SrTiO3 (2004) Nature, 430 (7001), pp. 758-761. , DOI 10.1038/nature02773Warusawithana, M.P., (2009) Science, 324 (5925), p. 367. , 10.1126/science.1169678 0036-8075Cheng, G., (2011) Nature Nanotechnol., 6 (6), p. 343. , 10.1038/nnano.2011.56 1748-3387Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., (2008) Nature Nanotechnol., 3 (7), p. 429. , 10.1038/nnano.2008.160 1748-3387Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S., (2009) Nanotechnology, 20 (21). , 10.1088/0957-4484/20/21/215201 0957-4484 215201Kwon, D.H., (2010) Nature Nanotechnol., 5 (2), p. 148. , 10.1038/nnano.2009.456 1748-3387Sawa, A., Resistive switching in transition metal oxides (2008) Materials Today, 11 (6), pp. 28-36. , DOI 10.1016/S1369-7021(08)70119-6, PII S1369702108701196Siles, P.F., Archanjo, B.S., Baptista, D.L., Pimentel, V.L., Yang, J.J., Neves, B.R.A., Medeiros-Ribeiro, G., (2011) J. Appl. Phys., 110 (2). , 10.1063/1.3609065 0021-8979 024511Xue, D., Betzler, K., Hesse, H., (2000) J. Phys.: Condens. Matter, 12 (13), p. 3113. , 10.1088/0953-8984/12/13/319 0953-8984Yeo, Y.C., King, T.J., Hu, C., (2002) Appl. Phys. Lett., 81 (11), p. 2091. , 10.1063/1.1506941 0003-6951Takemura, K., Sakuma, T., Miyasaka, Y., (1994) Appl. Phys. Lett., 64 (22), p. 2967. , 10.1063/1.111396 0003-6951Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S., (2011) Nanotechnology, 22 (48). , 10.1088/0957-4484/22/48/485203 0957-4484 485203Hur, J., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M., Chung, U., (2012) Nanotechnology, 23 (22). , 10.1088/0957-4484/23/22/225702 0957-4484 225702Yoon, K.J., Lee, M.H., Kim, G.H., Song, S.J., Seok, J.Y., Han, S., Yoon, J.H., Hwang, C.S., (2012) Nanotechnology, 23 (18). , 10.1088/0957-4484/23/18/185202 0957-4484 185202Zhang, L., Jiang, H.C., Liu, C., Dong, J.W., Chow, P., Annealing of Al2O3 thin films prepared by atomic layer deposition (2007) Journal of Physics D: Applied Physics, 40 (12), pp. 3707-3713. , DOI 10.1088/0022-3727/40/12/025, PII S0022372707450616, 025Lee, S.W., (2011) Chem. Mater., 23 (8), p. 2227. , 10.1021/cm2002572 0897-4756Kukli, K., Ritala, M., Pore, V., Leskelä, M., Sajavaara, T., Hegde, R.I., Gilmer, D.C., Aspinall, H.C., (2006) Chem. Vapor Depos., 12 (2-3), p. 158. , 10.1002/cvde.200506388 0948-1907Ng, C.J.W., Gao, H., Tan, T.T.Y., (2008) Nanotechnology, 19 (44). , 10.1088/0957-4484/19/44/445604 0957-4484 445604Kim, S.K., Hwang, C.S., (2004) J. Appl. Phys., 96 (4), p. 2323. , 10.1063/1.1769090 0021-8979Kundu, M., Miyata, N., Ichikawa, M., (2001) Appl. Phys. Lett., 78 (11), p. 1517. , 10.1063/1.1355294 0003-6951Groner, M.D., Elam, J.W., Fabreguette, F.H., George, S.M., Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates (2002) Thin Solid Films, 413 (1-2), pp. 186-197. , DOI 10.1016/S0040-6090(02)00438-8, PII S0040609002004388Diebold, U., (2003) Surf. Sci. Rep., 48 (5-8), p. 53. , 10.1016/S0167-5729(02)00100-0 0167-5729Stamate, M.D., (2000) Thin Solid Films, 372 (1-2), p. 246. , 10.1016/S0040-6090(00)01027-0 0040-6090Pang, C.L., Bikondoa, O., Humphrey, D.S., Papageorgiou, A.C., Cabailh, G., Ithnin, R., Chen, Q., Thornton, G., Tailored TiO2(110) surfaces and their reactivity (2006) Nanotechnology, 17 (21), pp. 5397-5405. , DOI 10.1088/0957-4484/17/21/019, PII S0957448406285362, 019Zhao, Z., Li, Z., Zou, Z., (2010) J. Phys.: Condens. Matter, 22 (17). , 10.1088/0953-8984/22/17/175008 0953-8984 175008Simmons, J.G., (1963) J. Appl. Phys., 34 (9), p. 2581. , 10.1063/1.1729774 0021-8979Horowitz, G., Fichou, D., Peng, X.D., Delannoy, P., (1990) J. Phys. France, 51 (13), p. 1489. , 10.1051/jphys:0199000510130148900 0302-0738Delannoy, P., (1981) Mater. Sci., 7, pp. 13-21Jogi, I., Kukli, K., Kemell, M., Ritala, M., Leskela, M., Electrical characterization of Alx Tiy Oz mixtures and Al2 O3 -Ti O2 - Al2 O3 nanolaminates (2007) Journal of Applied Physics, 102 (11), p. 114114. , DOI 10.1063/1.2822460Unno, H., Sato, Y., Toh, S., Yoshinaga, N., Matsumura, S., (2010) J. Electron Microsc., 59 (S1), p. 107. , 10.1093/jmicro/dfq037 0022-0744Kuo, D.H., Tzeng, K.H., (2004) Thin Solid Films, 460 (1-2), p. 327. , 10.1016/j.tsf.2004.02.026 0040-6090Parratt, L.G., (1954) Phys. Rev., 95 (2), p. 359. , 10.1103/PhysRev.95.359 0031-899XStrukov, D.B., Williams, R.S., (2009) Appl. Phys., 94 (3), p. 515. , 10.1007/s00339-008-4975-3 0947-8396 AYang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A.A., Pickett, M.D., Li, Z., Williams, R.S., (2011) Chem. Mater., 23 (2), p. 123. , 10.1021/cm1020959 0897-4756Ellingham, H.J.T., (1944) J. Soc. Chem. Indust., 63 (5), p. 125. , 10.1002/jctb.5000630501 0368-407

    Sketched Oxide Single-electron Transistor

    No full text
    Devices that confine and process single electrons represent an important scaling limit of electronics1,2. Such devices have been realized in a variety of materials and exhibit remarkable electronic, optical and spintronic properties3-5. Here, we use an atomic force microscope tip to reversibly 'sketch' single-electron transistors by controlling a metal-insulator transition at the interface of two oxides6-8. In these devices, single electrons tunnel resonantly between source and drain electrodes through a conducting oxide island with a diameter of ∼1.5 nm. We demonstrate control over the number of electrons on the island using bottom- and side-gate electrodes, and observe hysteresis in electron occupation that is attributed to ferroelectricity within the oxide heterostructure. These single-electron devices may find use as ultradense non-volatile memories, nanoscale hybrid piezoelectric and charge sensors, as well as building blocks in quantum information processing and simulation platforms.66343347Kastner, M.A., The single-electron transistor (1992) Rev. Mod. Phys., 64, pp. 849-858Hanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K., Spins in few-electron quantum dots (2007) Reviews of Modern Physics, 79 (4), pp. 1217-1265. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: RevModPhys.79.1217&metadataPrefix=oai_apsmeta_2, DOI 10.1103/RevModPhys.79.1217Klein, D.L., Rotht, R., Lim, A.K.L., Alivisatosti, A.P., McEuen, P.L., A single-electron transistor made from a cadmium selenide nanocrystal (1997) Nature, 389 (6652), pp. 699-701. , DOI 10.1038/39535Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Bredas, J.-L., Stuhr-Hansen, N., Hedegard, P., Bjornholm, T., Single-electron transistor of a single organic molecule with access to several redox states (2003) Nature, 425 (6959), pp. 698-701. , DOI 10.1038/nature02010Stampfer, C., Tunable graphene single electron transistor (2008) Nano Lett., 8, pp. 2378-2383Ohtomo, A., Hwang, H.Y., A high-mobility electron gas at the LaAlO3/SrtiO3 heterointerface (2004) Nature, 427 (6973), pp. 423-426. , DOI 10.1038/nature02308Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., Mannhart, J., Tunable quasi-two-dimensional electron gases in oxide heterostructures (2006) Science, 313 (5795), pp. 1942-1945. , DOI 10.1126/science.1131091Cen, C., Thiel, S., Hammerl, G., Schneider, C.W., Andersen, K.E., Hellberg, C.S., Mannhart, J., Levy, J., Nanoscale control of an interfacial metal-insulator transition at room temperature (2008) Nature Materials, 7 (4), pp. 298-302. , DOI 10.1038/nmat2136, PII NMAT2136Bi, F., Water-cycle mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface (2010) Appl. Phys. Lett., 97, p. 173110Cen, C., Thiel, S., Mannhart, J., Levy, J., Oxide nanoelectronics on demand (2009) Science, 323, pp. 1026-1030Bogorin, D.F., Nanoscale rectification at the LaAlO3/SrTiO3 interface (2010) Appl. Phys. Lett., 97, p. 013102Irvin, P., Rewritable nanoscale oxide photodetector (2010) Nature Photon., 4, pp. 849-852Cen, C., Bogorin, D.F., Levy, J., Thermal activation and quantum field emission in a sketch-based oxide nano transistor (2010) Nanotechnology, 21, p. 475201Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Schlom, D.G., Room-temperature ferroelectricity in strained SrTiO3 (2004) Nature, 430 (7001), pp. 758-761. , DOI 10.1038/nature02773Warusawithana, M.P., A ferroelectric oxide made directly on silicon (2009) Science, 324, pp. 367-370Jang, H.W., Ferroelectricity in strain-free SrTiO3 thin films (2010) Phys. Rev. Lett., 104, p. 197601Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F., Strain-gradientinduced polarization in SrTiO3 single crystals (2007) Phys. Rev. Lett., 99, p. 167601Singh-Bhalla, G., Built-in and induced polarization across LaAlO3/SrTiO 3 heterojunctions (2010) Nature Phys., 7, pp. 80-86Bockrath, M., Cobden, D.H., McEuen, P.L., Chopra, N.G., Zettl, A., Thess, A., Smalley, R.E., Single-electron transport in ropes of carbon nanotubes (1997) Science, 275 (5308), pp. 1922-1925. , DOI 10.1126/science.275.5308.1922Caviglia, A.D., Electric field control of the LaAlO3/SrTiO3 interface ground state (2008) Nature, 456, pp. 624-627Tarucha, S., Austing, D.G., Honda, T., Van Der Hage, R.J., Kouwenhoven, L.P., Shell filling and spin effects in a few electron quantum dot (1996) Physical Review Letters, 77 (17), pp. 3613-3616Kouwenhoven, L.P., Oosterkamp, T.H., Danoesastro, M.W.S., Eto, M., Austing, D.G., Honda, T., Tarucha, S., Excitation spectra of circular, few-electron quantum dots (1997) Science, 278 (5344), pp. 1788-1792. , DOI 10.1126/science.278.5344.1788Fricke, M., Lorke, A., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M., Shell structure and electron-electron interaction in self-assembled InAs quantum dots (1996) Europhys. Lett., 36, pp. 197-202Müller, K.A., Burkard, H., SrTiO3: An intrinsic quantum paraelectric below 4 K (1979) Phys. Rev., B19, pp. 3593-3602Goldhaber-Gordon, D., Shtrikmant, H., Mahalu, D., Abusch-Magder, D., Meirav, U., Kastner, M.A., Kondo effect in a single-electron transistor (1998) Nature, 391 (6663), pp. 156-159. , DOI 10.1038/34373Morello, A., Single-shot readout of an electron spin in silicon (2010) Nature, 467, pp. 687-691Park, J.W., Creation of a two-dimensional electron gas at an oxide interface on silicon (2010) Nat. Commun., 1, p. 94Knobel, R.G., Cleland, A.N., Nanometre-scale displacement sensing using a single electron transistor (2003) Nature, 424 (6946), pp. 291-293. , DOI 10.1038/nature01773Loss, D., Divincenzo, D.P., Quantum computation with quantum dots (1998) Physical Review A - Atomic, Molecular, and Optical Physics, 57 (1), pp. 120-126Jaksch, D., Zoller, P., The cold atom Hubbard toolbox (2005) Annals of Physics, 315 (1), pp. 52-79. , DOI 10.1016/j.aop.2004.09.010, PII S000349160400178

    The Discovery and Development of the Combretastatins

    No full text
    corecore