Tuning Resistive Switching On Single-pulse Doped Multilayer Memristors

Abstract

Short-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO2) film - here called single-pulse doped multilayers - are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO2 films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation. The increase in volume of the embedded Al2O3 plays a crucial role in tuning the conductance of devices, as well as the switching bias. The stacking of these oxide compounds and their use in electrical devices is investigated with respect to possible crystalline phases and local compound formation via chemical recombination. It is shown that our method can be used to produce compounds that cannot be synthesized a priori by direct ALD growth procedures but are of interest due to specific properties such as thermal or chemical stability, electrical resistivity or electric field polarization possibilities. The monolayer doping discussed here impacts considerably on the broadening of the spectrum of performance and technological applications of ALD-based memristors, allowing for additional degrees of freedom in the engineering of oxide devices. © 2013 IOP Publishing Ltd.243Levi, B.G., (2007) Phys. Today, 60 (6), p. 23. , 10.1063/1.2754590 0031-9228Eckstein, J.N., Oxide interfaces: Watch out for the lack of oxygen (2007) Nature Materials, 6 (7), pp. 473-474. , DOI 10.1038/nmat1944, PII NMAT1944Smadici, S., Lee, J.C.T., Wang, S., Abbamonte, P., Logvenov, G., Gozar, A., Cavellin, C.D., Bozovic, I., (2009) Phys. Rev. Lett., 102 (10). , 10.1103/PhysRevLett.102.107004 0031-9007 107004Schooley, J.F., Hosler, W.R., Cohen, M.L., (1964) Phys. Rev. Lett., 12 (17), p. 474. , 10.1103/PhysRevLett.12.474 0031-9007Koida, T., Lippmaa, M., Fukumura, T., Itaka, K., Matsumoto, Y., Kawasaki, M., Koinuma, H., (2002) Phys. Rev., 66 (14). , 10.1103/PhysRevB.66.144418 0163-1829 B 144418Ogawa, N., Satoh, T., Ogimoto, Y., Miyano, K., (2008) Phys. Rev., 78 (21). , 10.1103/PhysRevB.78.212409 1098-0121 B 212409Nanda, B.R.K., Satpathy, S., (2008) Phys. Rev. Lett., 101 (12). , 10.1103/PhysRevLett.101.127201 0031-9007 127201Ahn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, O., Triscone, J.-M., Local, nonvolatile electronic writing of epitaxial Pb(Zr 0.52Ti0.48)O3/SrRuO=3 heterostructures (1997) Science, 276 (5315), pp. 1100-1103. , DOI 10.1126/science.276.5315.1100Cohen Ronald, E., Origin of ferroelectricity in perovskite oxides (1992) Nature, 358 (6382), pp. 136-138. , DOI 10.1038/358136a0Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Schlom, D.G., Room-temperature ferroelectricity in strained SrTiO3 (2004) Nature, 430 (7001), pp. 758-761. , DOI 10.1038/nature02773Warusawithana, M.P., (2009) Science, 324 (5925), p. 367. , 10.1126/science.1169678 0036-8075Cheng, G., (2011) Nature Nanotechnol., 6 (6), p. 343. , 10.1038/nnano.2011.56 1748-3387Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., (2008) Nature Nanotechnol., 3 (7), p. 429. , 10.1038/nnano.2008.160 1748-3387Yang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S., (2009) Nanotechnology, 20 (21). , 10.1088/0957-4484/20/21/215201 0957-4484 215201Kwon, D.H., (2010) Nature Nanotechnol., 5 (2), p. 148. , 10.1038/nnano.2009.456 1748-3387Sawa, A., Resistive switching in transition metal oxides (2008) Materials Today, 11 (6), pp. 28-36. , DOI 10.1016/S1369-7021(08)70119-6, PII S1369702108701196Siles, P.F., Archanjo, B.S., Baptista, D.L., Pimentel, V.L., Yang, J.J., Neves, B.R.A., Medeiros-Ribeiro, G., (2011) J. Appl. Phys., 110 (2). , 10.1063/1.3609065 0021-8979 024511Xue, D., Betzler, K., Hesse, H., (2000) J. Phys.: Condens. Matter, 12 (13), p. 3113. , 10.1088/0953-8984/12/13/319 0953-8984Yeo, Y.C., King, T.J., Hu, C., (2002) Appl. Phys. Lett., 81 (11), p. 2091. , 10.1063/1.1506941 0003-6951Takemura, K., Sakuma, T., Miyasaka, Y., (1994) Appl. Phys. Lett., 64 (22), p. 2967. , 10.1063/1.111396 0003-6951Torrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S., (2011) Nanotechnology, 22 (48). , 10.1088/0957-4484/22/48/485203 0957-4484 485203Hur, J., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M., Chung, U., (2012) Nanotechnology, 23 (22). , 10.1088/0957-4484/23/22/225702 0957-4484 225702Yoon, K.J., Lee, M.H., Kim, G.H., Song, S.J., Seok, J.Y., Han, S., Yoon, J.H., Hwang, C.S., (2012) Nanotechnology, 23 (18). , 10.1088/0957-4484/23/18/185202 0957-4484 185202Zhang, L., Jiang, H.C., Liu, C., Dong, J.W., Chow, P., Annealing of Al2O3 thin films prepared by atomic layer deposition (2007) Journal of Physics D: Applied Physics, 40 (12), pp. 3707-3713. , DOI 10.1088/0022-3727/40/12/025, PII S0022372707450616, 025Lee, S.W., (2011) Chem. Mater., 23 (8), p. 2227. , 10.1021/cm2002572 0897-4756Kukli, K., Ritala, M., Pore, V., Leskelä, M., Sajavaara, T., Hegde, R.I., Gilmer, D.C., Aspinall, H.C., (2006) Chem. Vapor Depos., 12 (2-3), p. 158. , 10.1002/cvde.200506388 0948-1907Ng, C.J.W., Gao, H., Tan, T.T.Y., (2008) Nanotechnology, 19 (44). , 10.1088/0957-4484/19/44/445604 0957-4484 445604Kim, S.K., Hwang, C.S., (2004) J. Appl. Phys., 96 (4), p. 2323. , 10.1063/1.1769090 0021-8979Kundu, M., Miyata, N., Ichikawa, M., (2001) Appl. Phys. Lett., 78 (11), p. 1517. , 10.1063/1.1355294 0003-6951Groner, M.D., Elam, J.W., Fabreguette, F.H., George, S.M., Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates (2002) Thin Solid Films, 413 (1-2), pp. 186-197. , DOI 10.1016/S0040-6090(02)00438-8, PII S0040609002004388Diebold, U., (2003) Surf. Sci. Rep., 48 (5-8), p. 53. , 10.1016/S0167-5729(02)00100-0 0167-5729Stamate, M.D., (2000) Thin Solid Films, 372 (1-2), p. 246. , 10.1016/S0040-6090(00)01027-0 0040-6090Pang, C.L., Bikondoa, O., Humphrey, D.S., Papageorgiou, A.C., Cabailh, G., Ithnin, R., Chen, Q., Thornton, G., Tailored TiO2(110) surfaces and their reactivity (2006) Nanotechnology, 17 (21), pp. 5397-5405. , DOI 10.1088/0957-4484/17/21/019, PII S0957448406285362, 019Zhao, Z., Li, Z., Zou, Z., (2010) J. Phys.: Condens. Matter, 22 (17). , 10.1088/0953-8984/22/17/175008 0953-8984 175008Simmons, J.G., (1963) J. Appl. Phys., 34 (9), p. 2581. , 10.1063/1.1729774 0021-8979Horowitz, G., Fichou, D., Peng, X.D., Delannoy, P., (1990) J. Phys. France, 51 (13), p. 1489. , 10.1051/jphys:0199000510130148900 0302-0738Delannoy, P., (1981) Mater. Sci., 7, pp. 13-21Jogi, I., Kukli, K., Kemell, M., Ritala, M., Leskela, M., Electrical characterization of Alx Tiy Oz mixtures and Al2 O3 -Ti O2 - Al2 O3 nanolaminates (2007) Journal of Applied Physics, 102 (11), p. 114114. , DOI 10.1063/1.2822460Unno, H., Sato, Y., Toh, S., Yoshinaga, N., Matsumura, S., (2010) J. Electron Microsc., 59 (S1), p. 107. , 10.1093/jmicro/dfq037 0022-0744Kuo, D.H., Tzeng, K.H., (2004) Thin Solid Films, 460 (1-2), p. 327. , 10.1016/j.tsf.2004.02.026 0040-6090Parratt, L.G., (1954) Phys. Rev., 95 (2), p. 359. , 10.1103/PhysRev.95.359 0031-899XStrukov, D.B., Williams, R.S., (2009) Appl. Phys., 94 (3), p. 515. , 10.1007/s00339-008-4975-3 0947-8396 AYang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A.A., Pickett, M.D., Li, Z., Williams, R.S., (2011) Chem. Mater., 23 (2), p. 123. , 10.1021/cm1020959 0897-4756Ellingham, H.J.T., (1944) J. Soc. Chem. Indust., 63 (5), p. 125. , 10.1002/jctb.5000630501 0368-407

    Similar works