11 research outputs found
Examination of an in-vitro methodology to evaluate the biomechanical performance of nucleus augmentation in axial compression
Intervertebral disc degeneration is one of the leading causes of back pain, but treatment options remain limited. Recently, there have been advances in the development of biomaterials for nucleus augmentation; however, the testing of such materials preclinically has proved challenging. The aim of this study was to develop methods for fabricating and testing bone-disc-bone specimens in vitro for examining the performance of nucleus augmentation procedures. Control, nucleotomy and treated intervertebral disc specimens were fabricated and tested under static load. The nucleus was removed from nucleotomy specimens using a trans-endplate approach with a bone plug used to restore bony integrity. Specimen-specific finite element models were developed to elucidate the reasons for the variations observed between control specimens. Although the computational models predicted a statistically significant difference between the healthy and nucleotomy groups, the differences found experimentally were not significantly different. This is likely due to variations in the material properties, hydration and level of annular collapse. The deformation of the bone was also found to be non-negligible. The study provides a framework for the development of testing protocols for nucleus augmentation materials and highlights the need to control disc hydration and the length of bone retained to reduce inter-specimen variability
Annulus fibrosus functional extrafibrillar and fibrous mechanical behaviour: experimental and computational characterisation
The development of current surgical treatments for intervertebral disc damage could benefit from virtual environment accounting for population variations. For such models to be reliable, a relevant description of the mechanical properties of the different tissues and their role in the functional mechanics of the disc is of major importance. The aims of this work were first to assess the physiological hoop strain in the annulus fibrosus in fresh conditions (n = 5) in order to extract a functional behaviour of the extrafibrillar matrix; then to reverse-engineer the annulus fibrosus fibrillar behaviour (n = 6). This was achieved by performing both direct and global controlled calibration of material parameters, accounting for the whole process of experimental design and in silico model methodology. Direct-controlled models are specimen-specific models representing controlled experimental conditions that can be replicated and directly comparing measurements. Validation was performed on another six specimens and a sensitivity study was performed. Hoop strains were measured as 17 ± 3% after 10 min relaxation and 21 ± 4% after 20–25 min relaxation, with no significant difference between the two measurements. The extrafibrillar matrix functional moduli were measured as 1.5 ± 0.7 MPa. Fibre-related material parameters showed large variability, with a variance above 0.28. Direct-controlled calibration and validation provides confidence that the model development methodology can capture the measurable variation within the population of tested specimens
Resolving the size of ice-nucleating particles with a balloon deployable aerosol sampler: the SHARK
Ice-nucleating particles (INPs) affect cloud development, lifetime, and radiative properties, hence it is important to know the abundance of INPs throughout the atmosphere. A critical factor in determining the lifetime and transport of INPs is their size; however very little size-resolved atmospheric INP concentration information exists. Here we present the development and application of a radio-controlled payload capable of collecting size-resolved aerosol from a tethered balloon for the primary purpose of offline INP analysis. This payload, known as the SHARK (Selective Height Aerosol Research Kit), consists of two complementary cascade impactors for aerosol size-segregation from 0.25 to 10 µm, with an after-filter and top stage to collect particles below and above this range at flow rates of up to 100 L min−1. The SHARK also contains an optical particle counter to quantify aerosol size distribution between 0.38 and 10 µm, and a radiosonde for the measurement of temperature, pressure, GPS altitude, and relative humidity. This is all housed within a weatherproof box, can be run from batteries for up to 11 h, and has a total weight of 9 kg. The radio control and live data link with the radiosonde allow the user to start and stop sampling depending on meteorological conditions and height, which can, for example, allow the user to avoid sampling in very humid or cloudy air, even when the SHARK is out of sight. While the collected aerosol could, in principle, be studied with an array of analytical techniques, this study demonstrates that the collected aerosol can be analysed with an offline droplet freezing instrument to determine size-resolved INP concentrations, activated fractions, and active site densities, producing similar results to those obtained using a standard PM10 aerosol sampler when summed over the appropriate size range. Test data, where the SHARK was sampling near ground level or suspended from a tethered balloon at 20 m altitude, are presented from four contrasting locations having very different size-resolved INP spectra: Hyytiälä (southern Finland), Leeds (northern England), Longyearbyen (Svalbard), and Cardington (southern England)
Homogeneous Freezing of Water Using Microfluidics
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of −35.1 to −36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice–supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m−2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets
The importance of acid-processed meteoric smoke relative to meteoric fragments for crystal nucleation in polar stratospheric clouds
The crystal formation of nitric acid trihydrate (NAT) in the absence of water ice is important for a subset of polar stratospheric clouds (PSCs) and thereby ozone depletion. It has been suggested that either fragmented meteoroids or meteoric smoke particles (MSPs), or possibly both, are important as heterogeneous nuclei of these crystals. Previous work has focused on the nucleating ability of meteoric material in nitric acid in the absence of sulfuric acid. However, it is known that when immersed in stratospheric sulfuric acid droplets, metal-containing meteoric material particles partially dissolve and components can reprecipitate as silica and alumina that have different morphologies to the original meteoric material. Hence, in this study, we experimentally and theoretically explore the relative role that sulfuric acid-processed MSPs and meteoric fragments may play in NAT nucleation in PSCs.
We compared meteoric fragments that had recently been prepared (by milling a meteorite sample) to a sample annealed under conditions designed to simulate heating during entry into the Earth's atmosphere. Whilst the addition of sulfuric acid decreased the nucleating ability of the recently milled meteoric material relative to nucleation in binary nitric acid-water solutions (at similar NAT saturation ratio), the annealed meteoric fragments nucleated NAT with a similar effectiveness in both solutions. However, combining our results with measured fluxes of meteoric material to the Earth, sedimentation modelling and recent experiments on fragmentation of incoming meteoroids suggests that it is unlikely for there to be sufficient fragments to contribute to the nucleation of crystalline NAT particles.
We then considered silica formed from sulfuric acid-processed MSPs. Our previous work showed that nanoparticulate silica (radius ∼6 nm) is a relatively poor promoter of nucleation compared with micron-scaled silica particles, which were more effective. Both materials have similar chemical and structural (crystallographically amorphous) properties, indicating that size is critical. Here, we account for surface curvature of primary grains using the Classical Nucleation Theory (CNT) to explore this size dependence. This model is able to explain the discrepancy in nucleation effectiveness of fumed silica and fused quartz by treating their nucleating activity (contact angle) as equal but with differing particle size (or surface curvature), assuming interfacial energies that are physically reasonable. Here, we use this CNT model to present evidence that nucleation of NAT on acid-processed MSPs, where the primary grain size is tens of nanometres, is also effective enough to contribute to NAT crystals in early season PSCs where there is an absence of ice.
This study demonstrates that the modelling of crystal nucleation in PSCs and resulting ozone depletion relies on an accurate understanding of the transport and chemical processing of MSPs. This will affect estimated sensitivity of stratospheric chemistry to rare events such as large volcanic eruptions and long-term forecasting of ozone recovery in a changing climate
On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow
The freezing of supercooled water to ice and the materials which catalyse this process are of fundamental interest to a wide range of fields. At present, our ability to control, predict or monitor ice formation processes is poor. The isolation and characterisation of frozen droplets from supercooled liquid droplets would provide a means of improving our understanding and control of these processes. Here, we have developed a microfluidic platform for the continuous flow separation of frozen from unfrozen picolitre droplets based on differences in their density, thus allowing the sorting of ice crystals and supercooled water droplets into different outlet channels with 94 ± 2% efficiency. This will, in future, facilitate downstream or off-chip processing of the frozen and unfrozen populations, which could include the analysis and characterisation of ice-active materials or the selection of droplets with a particular ice-nucleating activity
On-chip analysis of atmospheric ice-nucleating particles in continuous flow
Ice-nucleating particles (INPs) are of atmospheric importance because they catalyse the freezing of supercooled cloud droplets, strongly affecting the lifetime and radiative properties of clouds. There is a need to improve our knowledge of the global distribution of INPs, their seasonal cycles and long-term trends, but our capability to make these measurements is limited. Atmospheric INP concentrations are often determined using assays involving arrays of droplets on a cold stage, but such assays are frequently limited by the number of droplets that can be analysed per experiment, often involve manual processing (e.g. pipetting of droplets), and can be susceptible to contamination. Here, we present a microfluidic platform, the LOC-NIPI (Lab-on-a-Chip Nucleation by Immersed Particle Instrument), for the generation of water-in-oil droplets and their freezing in continuous flow as they pass over a cold plate for atmospheric INP analysis. LOC-NIPI allows the user to define the number of droplets analysed by simply running the platform for as long as required. The use of small (∼100 μm diameter) droplets minimises the probability of contamination in any one droplet and therefore allows supercooling all the way down to homogeneous freezing (around −36 °C), while a temperature probe in a proxy channel provides an accurate measure of temperature without the need for temperature modelling. The platform was validated using samples of pollen extract and Snomax®, with hundreds of droplets analysed per temperature step and thousands of droplets being measured per experiment. Homogeneous freezing of purified water was studied using >10 000 droplets with temperature increments of 0.1 °C. The results were reproducible, independent of flow rate in the ranges tested, and the data compared well to conventional instrumentation and literature data. The LOC-NIPI was further benchmarked in a field campaign in the Eastern Mediterranean against other well-characterised instrumentation. The continuous flow nature of the system provides a route, with future development, to the automated monitoring of atmospheric INP at field sites around the globe
Methodology to produce specimen-specific models of vertebrae: application to different species – Data set.
Experimental and computational data for each species
The study of atmospheric ice-nucleating particles using microfluidically generated droplets
We present the study of atmospherically relevant ice-nucleating particles (INP) via on-chip droplet generation with downstream cooling. The apparatus was applied to the measurement of a range of INP samples and to the analysis of collected atmospheric aerosol samples, with a view to deployment in future global field campaigns