2,440 research outputs found
Assessment of the atmospheric impact of volcanic eruptions
The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere
Spontaneous and Superfluid Chiral Edge States in Exciton-Polariton Condensates
We present a scheme of interaction-induced topological bandstructures based
on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We
predict theoretically that this scheme allows the engineering of topological
gaps, without requiring a magnetic field or strong spin-orbit interaction
(transverse electric-transverse magnetic splitting). Under non-resonant
pumping, we find that an initially topologically trivial system undergoes a
topological transition upon the spontaneous breaking of phase symmetry
associated with polariton condensation. Under resonant coherent pumping, we
find that it is also possible to engineer a topological dispersion that is
linear in wavevector -- a property associated with polariton superfluidity.Comment: 6 pages, 4 figure
All-to-all connected networks by multi-frequency excitation of polaritons
We analyze theoretically a network of all-to-all coupled polariton modes,
realized by a trapped polariton condensate excited by a comb of different
frequencies. In the low-density regime the system dynamically finds a state
with maximal gain defined by the average intensities (weights) of the
excitation beams, analogous to active mode locking in lasers, and thus solves a
maximum eigenvalue problem set by the matrix of weights. The method opens the
possibility to tailor a superposition of populated bosonic modes in the trapped
condensate by appropriate choice of drive
Aharonov-Bohm effect for excitons in a semiconductor quantum ring dressed by circularly polarized light
We show theoretically that the strong coupling of circularly polarized
photons to an exciton in ring-like semiconductor nanostructures results in
physical nonequivalence of clockwise and counterclockwise exciton rotations in
the ring. As a consequence, the stationary energy splitting of exciton states
corresponding to these mutually opposite rotations appears. This excitonic
Aharonov-Bohm effect depends on the intensity and frequency of the circularly
polarized field and can be detected in state-of-the-art optical experiments.Comment: Published versio
Vortices in spinor cold exciton condensates with spin-orbit interaction
We study theoretically the ground states of topological defects in a spinor
four-component condensate of cold indirect excitons. We analyze possible ground
state solutions for different configurations of vortices and half-vortices. We
show that if only Rashba or Dreselhaus spin-orbit interaction (SOI) for
electrons is present the stable states of topological defects can represent a
cylindrically symmetric half-vortex or half vortex-antivortex pairs, or a
non-trivial pattern with warped vortices. In the presence of both of Rashba and
Dresselhaus SOI the ground state of a condensate represents a stripe phase and
vortex type solutions become unstable
The Survival Rate of Ejected Terrestrial Planets with Moons
During planet formation, a gas giant will interact with smaller protoplanets
that stray within its sphere of gravitational influence. We investigate the
outcome of interactions between gas giants and terrestrial-sized protoplanets
with lunar-sized companions. An interaction between a giant planet and a
protoplanet binary may have one of several consequences, including the delivery
of volatiles to the inner system, the capture of retrograde moons by the giant
planet, and the ejection of one or both of the protoplanets. We show that an
interesting fraction of terrestrial-sized planets with lunar sized companions
will likely be ejected into interstellar space with the companion bound to the
planet. The companion provides an additional source of heating for the planet
from tidal dissipation of orbital and spin angular momentum. This heat flux
typically is larger than the current radiogenic heating of the Earth for up to
the first few hundred million years of evolution. In combination with an
atmosphere of sufficient thickness and composition, the heating can provide the
conditions necesary for liquid water to persist on the surface of the
terrestrial mass planet, making it a potential site for life. We also determine
the possibility for directly detecting such systems through all-sky infrared
surveys or microlensing surveys. Microlensing surveys in particular will
directly measure the frequency of this phenomenon.Comment: 4 pages, 2 figures, Accepted to ApJ
Switching waves in multi-level incoherently driven polariton condensates
We show theoretically that an open-dissipative polariton condensate confined
within a trapping potential and driven by an incoherent pumping scheme gives
rise to bistability between odd and even modes of the potential. Switching from
one state to the other can be controlled via incoherent pulsing which becomes
an important step towards construction of low-powered opto-electronic devices.
The origin of the effect comes from modulational instability between odd and
even states of the trapping potential governed by the nonlinear
polariton-polariton interactions
Parity solitons in nonresonantly driven-dissipative condensate channels
We study analytically and numerically the condensation of a
driven-dissipative exciton-polariton system using symmetric nonresonant pumping
geometries. We show that the lowest condensation threshold solution carries a
definite parity as a consequence of the symmetric excitation profile. At higher
pump intensities competition between the two parities can result in critical
quenching of one and saturation of the other. Using long pump channels, we show
that the competition of the condensate parities gives rise to a different type
of topologically stable defect propagating indefinitely along the condensate.
The defects display repulsive interactions and are characterized by a sustained
wavepacket carrying a pair of opposite parity domain walls in the condensate
channel
Information processing with topologically protected vortex memories in exciton-polariton condensates
We show that in a non-equilibrium system of an exciton-polariton condensate,
where polaritons are generated from incoherent pumping, a ring-shaped pump
allows for stationary vortex memory elements of topological charge or
. Using simple potential guides we can choose whether to copy the same
charge or invert it onto another spatially separate ring pump. Such
manipulation of binary information opens the possibility of a new type
processing using vortices as topologically protected memory components
- …