6 research outputs found

    Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase

    Get PDF
    Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure–function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis–Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase

    Interference in a quantum dot molecule embedded in a ring interferometer

    No full text
    Interference experiments are presented involving electronic quantum transport through an artificial quantum dot molecule in the Coulomb blockade regime embedded in a ring interferometer. Full tunability and the high stability of the structure allowed the transmission phase through this system, spin-related interference phenomena, and Fano-type interference to be studied. When a part of the interferometer is itself tuned into the Coulomb blockade regime, a phase-coherently coupled triple dot system can be investigated. The experiments demonstrate the feasibility of complex quantum circuits with a high degree of phase-coherence.ISSN:1367-263

    Analysis of the Stable Isotope Ratios (18O/16O, 17O/16O, and D/H) in Glacier Water by Laser Spectrometry

    No full text
    A compact isotope ratio sensor based on laser absorption spectroscopy at 2.7 μm was developed for high precision and simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in glacier water. Measurements of the oxygen and hydrogen isotope ratios in glacier water demonstrate a 1σ precision of 0.3‰ for δ18O, 0.2‰ for δ17O, and 0.5‰ for δ2H, respectively. The δvalues of the working standard glacier water obtained by the calibrated sensor system is basically identical to the IRMS measurement results with a very high calibration accuracy from 0.17‰ to 0.75‰. Preliminary results on the reproducibility measurements display a standard deviation of 0.13‰ for δ18O, 0.13‰ for δ17O, and 0.64‰ for δ2H, respectively.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Salivary Fingerprinting of Periodontal Disease by Infrared-ATR Spectroscopy

    No full text
    Purpose Periodontal diseases, the most common chronic inflammatory diseases in humans, do not only affect tooth-supporting tissues but also other body parts by contributing to the development of life-threatening conditions. Since currently available diagnostic methods in periodontics lack the ability to identify patients at high risk for periodontal disease progression, development of innovative, non-invasive, rapid detection methods for diagnosing periodontal diseases is needed. This study aims to assess the potential of infrared attenuated total reflection (IR-ATR) spectroscopy to detect differences in composition of saliva supernatant in non-periodontitis individuals (control) and patients with generalized aggressive periodontitis (G-AgP). Experimental Design IR-ATR is performed with a wavelength interval from 1230 to 1180 cm(-1), analyzed with a simple subtraction in absorbance data. Results Ten samples show in the analysis of variance of the two data sets a true difference (99.8%). A principal component analysis (PCA) is able to discriminate between G-AgP and control groups. Conclusion and Clinical Relevance This study demonstrates for the first time that IR-ATR spectroscopy is a promising tool for the analysis of saliva supernatant for the diagnosis of periodontitis, and potentially other periodontal conditions. IR-ATR spectroscopy holds the potential to be miniaturized and utilized as a non-invasive screening test.The financial support by the Swiss scientific initiative nano-tera (Project IrSens, Project number: 20NAN1_123589) and by the author's Institutions (Karolinska Institutet and ETH Zurich) is gratefully acknowledged.Swiss scientific initiative nano-tera (Project IrSens) [20NAN1_123589]; Karolinska Institutet; ETH Zuric

    Literatur

    No full text
    corecore