57 research outputs found

    Integrated quantized electronics: a semiconductor quantized voltage source

    Full text link
    The Josephson effect in superconductors links a quantized output voltage Vout = f \cdot(h/2e) to the natural constants of the electron's charge e, Planck's constant h, and to an excitation frequency f with important applications in electrical quantum metrology. Also semiconductors are routinely applied in electrical quantum metrology making use of the quantum Hall effect. However, despite their broad range of further applications e.g. in integrated circuits, quantized voltage generation by a semiconductor device has never been obtained. Here we report a semiconductor quantized voltage source generating quantized voltages Vout = f\cdot(h/e). It is based on an integrated quantized circuit of a single electron pump operated at pumping frequency f and a quantum Hall device monolithically integrated in series. The output voltages of several \muV are expected to be scalable by orders of magnitude using present technology. The device might open a new route towards the closure of the quantum metrological triangle. Furthermore it represents a universal electrical quantum reference allowing to generate quantized values of the three most relevant electrical units of voltage, current, and resistance based on fundamental constants using a single device.Comment: 15 pages, 3 figure

    Kinetics of four-wave mixing for a 2D magneto-plasma in strong magnetic fields

    Full text link
    We investigate the femtosecond kinetics of an optically excited 2D magneto-plasma at intermediate and high densities under a strong magnetic field perpendicular to the quantum well (QW). We assume an additional weak lateral confinement which lifts the degeneracy of the Landau levels partially. We calculate the femtosecond dephasing and relaxation kinetics of the laser pulse excited magneto-plasma due to bare Coulomb potential scattering, because screening is under these conditions of minor importance. In particular the time-resolved and time-integrated four-wave mixing (FWM) signals are calculated by taking into account three Landau subbands in both the valance and the conduction band assuming an electron-hole symmetry. The FWM signals exhibit quantum beats mainly with twice the cyclotron frequency. Contrary to general expectations, we find no pronounced slowing down of the dephasing with increasing magnetic field. On the contrary, one obtains a decreasing dephasing time because of the increase of the Coulomb matrix elements and the number of states in a given Landau subband. In the situation when the loss of scattering channels exceeds these increasing effects, one gets a slight increase at the dephasing time. However, details of the strongly modulated scattering kinetics depend sensitively on the detuning, the plasma density, and the spectral pulse width relative to the cyclotron frequency.Comment: 13 pages, in RevTex format, 10 figures, Phys. Rev B in pres

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig

    Phonon-induced dephasing of localized optical excitations

    Get PDF
    The dynamics of strongly localized optical excitations in semiconductors is studied including electron-phonon interaction. The coupled microscopic equations of motion for the interband polarization and the carrier distribution functions contain coherent and incoherent contributions. While the coherent part is solved through direct numerical integration, the incoherent one is treated by means of a generalized Monte Carlo simulation. The approach is illustrated for a simple model system. The temperature and excitation energy dependence of the optical dephasing rate is analyzed and the results are compared to those of alternative approaches

    Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease

    Get PDF
    OBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management

    Luminescence spectra and kinetics of disordered solid solutions

    Get PDF
    We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized in the wells of random potential induced by disorder. Classification of optically active tail states of the main exciton band into two groups is proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended states belonging to the percolation cluster, whereas only a relatively small group of “radiative” states forms the steady-state luminescence band. The continuum percolation theory is applied to distinguish the “radiative” localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states. It is found that the analysis of the exciton-phonon interaction gives the information about the character of the localization of excitons. We have shown that the model used describes quite well the experimental cw spectra of CdS(1−c)Sec and ZnSe(1−c)Tec solid solutions. Further, the experimental results are presented for the temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from the interplay of population dynamics of extended states and spatially isolated “radiative” states. Finally, the measurements of the decay of the spectrally integrated luminescence intensity at long delay times are presented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed behavior of the luminescence

    Optical microscopy in the nano-world

    Get PDF
    Scanning near-field optical microscopy (SNOM) is an optical microscopy whose resolution is not bound to the diffraction limit. It provides chemical information based upon spectral, polarization and/or fluorescence contrast images. Details as small as 20 nm can be recognized. Photophysical and photochemical effects can be studied with SNOM on a similar scale. This article reviews a good deal of the experimental and theoretical work on SNOM in Switzerland

    Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen—the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002–2006)

    Get PDF
    Aims: To determine disc haemorrhages (DH) prevalence in an elderly UK population-the Bridlington Eye Assessment Project (BEAP).Methods: Thirty-degree (30°) fundus photographs (3549 participants ≄65 years) were graded for DH/macula changes. Glaucoma evaluation included Goldmann tonometry, 26-point suprathreshold visual-fields and mydriatic slit-lamp assessment for glaucomatous optic neuropathy.Results: 3548 participants with photographs in at least one eye. DH were present in 53 subjects (1.49%), increasing from 1.17% (65-69-year age-group) to 2.19% (80-84-year age53 group), p=0.06. DH was found in 9/96 (9.38%) right eyes (RE) with open angle glaucoma (OAG). Two of twelve RE (16.67%) with normal tension glaucoma (NTG) had DH. Prevalence in eyes without glaucoma was lower (32/3452, [0.93%]). Reticular pseudodrusen (RPD) occurred in 170/3212 (5.29%) subjects without DH, and 8/131 subjects (6.11%) with OAG. Twenty (20) eyes had normal tension glaucoma (NTG), 2 of whom had RPD (10%) (p=0.264). Within a logistic regression model, DH was associated with glaucoma (OR 10.2, 95% CI 5.32 - 19.72) and increasing age (OR 1.05, 95% CI 1.00-1.10, p=0.03). DH was associated with RPD (p=0.05) with univariate analysis but this was not statistically significant in the final adjusted model. There was no significant association with gender, diabetes mellitus (DM), hypertension treatment or AMD grade.Conclusion: DH prevalence is 1.5% in those over 65 years old and significantly associated with glaucoma and increasing age. There appears to be increased RPD prevalence in eyes with DH and NTG with age acting as a confounding factor. Larger studies are required to fully assess the relationship and investigate a possible shared aetiology of choroidal ischaemia

    Arts metals

    No full text
    96 p.; 23 cm
    • 

    corecore