155 research outputs found

    Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    Get PDF
    Š The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 1267, doi:10.1038/s41598-017-01260-y.Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.This research was supported by US Department of Energy Office of Biological and Environmental Research Grant DE-SC0006951, National Science Foundation Grants DBI-959333 and AGS-1005663, and the University of Chicago and the MBL Lillie Research Innovation Award to J.T. and China Scholarship Council (CSC) to H.Y

    The effect of combination therapy of allicin and fenofibrate on high fat diet-induced vascular endothelium dysfunction and liver damage in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is designed to investigate the effects of combination therapy of allicin and fenofibrate on the endothelial and liver functions in rats with hyperlipidemia.</p> <p>Methods</p> <p>The healthy male Wistar rats fed high fat diet were treated with fenofibrate (80 mg/kg per day) alone, allicin (60 mg/kg per day) alone and a lower dasage of combined therapy (allicin 20 mg/kg per day and fenofibrate 30 mg/kg per day) respectively for 8 weeks. The serum levels of cholesterol, triglyceride, nitrogen oxidative, alanine transferase (ALT) and aspartate transferase (AST) were determined. Acetylcholine-induced endothelium-dependent vascular relaxation (EDVR) of aorta rings was tested, and the morphologic changes of liver tissue were observed.</p> <p>Results</p> <p>Compared with high fat diet control, fenofibrate alone or the combined therapy increased remarkably the levels of high density lipoprotein respectively (P < 0.05). Both single and combined therapy of fenofibrate and allicin significantly enhanced the levels of NO (P < 0.01 or P < 0.05), but the combined therapy had greatest high EDVR responses (P < 0.01). Furthermore, the reduced levels of ALT and AST were significantly obvious in the combined therapy groups (P < 0.01 or P < 0.05). In addition, the lower dosage of combined therapy significantly ameliorated severe fatty degeneration of liver cells occurred in the high fat diet fed rat although the single fenofibrate treatment showed spotty necrosis of liver cells and bile duct expansion.</p> <p>Conclusion</p> <p>Combination therapy with allicin and fenofibrate can effectively enhance the protective effects on endothelial function and reduce the hepatic damage in rats with hyperlipidemia.</p

    Metacommunity robustness of plant–fly–wasp tripartite networks with specialization to habitat loss

    Get PDF
    Recent observations have found plant‐species‐specific fly‐host selection (i.e., specialization) of wasp parasitoids (wasps) in plant–fly–wasp (P–F–W) tripartite networks, yet no study has explored the dynamical implications of such high‐order specialization for the persistence of this network. Here we develop a patch‐dynamic framework for a unique P–F–W tripartite network with specialization observed in eastern Tibetan Plateau and explore its metacommunity robustness to habitat loss. We show that specialization in parasitoidism promotes fly species diversity, while the richness of both plant and wasp decreases. Compared to other two null models, real network structure favors plant species coexistence but increases the extinction risk for both flies and wasps. However, these effects of specialization and network structure would be weakened and ultimately disappear with increasing habitat loss. Interestingly, intermediate levels of habitat loss can maximize the diversity of flies and wasps, while increasing or decreasing habitat loss results in more species losses, supporting intermediate disturbance hypothesis. Finally, we observe that high levels of habitat loss initiate a bottom‐up cascade of species extinction from plants to both flies and wasps, resulting in a rapid collapse of the whole tripartite networks. Overall, this theoretical framework is the first attempt to characterize the dynamics of whole tripartite metacommunities interacting in realistic high‐order ways, offering new insights into complex multipartite networks

    An IoT-oriented data placement method with privacy preservation in cloud environment

    Get PDF
    Š 2018 Elsevier Ltd IoT (Internet of Things) devices generate huge amount of data which require rich resources for data storage and processing. Cloud computing is one of the most popular paradigms to accommodate such IoT data. However, the privacy conflicts combined in the IoT data makes the data placement problem more complicated, and the resource manager needs to take into account the resource efficiency, the power consumption of cloud data centers, and the data access time for the IoT applications while allocating the resources for the IoT data. In view of this challenge, an IoT-oriented Data Placement method with privacy preservation, named IDP, is designed in this paper. Technically, the resource utilization, energy consumption and data access time in the cloud data center with the fat-tree topology are analyzed first. Then a corresponding data placement method, based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II), is designed to achieve high resource usage, energy saving and efficient data access, and meanwhile realize privacy preservation of the IoT data. Finally, extensive experimental evaluations validate the efficiency and effectiveness of our proposed method

    Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statins are first-line pharmacotherapeutic agents for hypercholesterolemia treatment in humans. However the effects of statins on atherosclerosis in mouse models are very paradoxical. In this work, we wanted to evaluate the effects of simvastatin on serum cholesterol, atherogenesis, and the expression of several factors playing important roles in reverse cholesterol transport (RCT) in apoE-/- mice fed a high-fat diet.</p> <p>Results</p> <p>The atherosclerotic lesion formation displayed by oil red O staining positive area was reduced significantly by 35% or 47% in either aortic root section or aortic arch en face in simvastatin administrated apoE-/- mice compared to the control. Plasma analysis by enzymatic method or ELISA showed that high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) contents were remarkably increased by treatment with simvastatin. And plasma lecithin-cholesterol acyltransferase (LCAT) activity was markedly increased by simvastatin treatment. Real-time PCR detection disclosed that the expression of several transporters involved in reverse cholesterol transport, including macrophage scavenger receptor class B type I, hepatic ATP-binding cassette (ABC) transporters ABCG5, and ABCB4 were induced by simvastatin treatment, the expression of hepatic ABCA1 and apoA-I, which play roles in the maturation of HDL-C, were also elevated in simvastatin treated groups.</p> <p>Conclusions</p> <p>We demonstrated the anti-atherogenesis effects of simvastatin in apoE-/- mice fed a high-fat diet. We confirmed here for the first time simvastatin increased the expression of hepatic ABCB4 and ABCG5, which involved in secretion of cholesterol and bile acids into the bile, besides upregulated ABCA1 and apoA-I. The elevated HDL-C level, increased LCAT activity and the stimulation of several transporters involved in RCT may all contribute to the anti-atherosclerotic effect of simvastatin.</p

    Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Global Change Biology 23 (2017): 2874-2886, doi: 10.1111/gcb.13590.Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales, and explored how leaf-level ChlF was linked with canopy-scale solar induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R2=0.73, 0.77 and 0.86 at leaf, canopy and satellite scales, respectively; p<0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R2=0.68; p<0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf Fq’/Fm’, the fraction of absorbed photons that are used for photochemistry for a light adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy-SIF yield (SIF/APAR, R2=0.79; p<0.0001). We also found that canopy-SIF and SIF-derived GPP (GPPSIF) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R2=0.65 for canopy-GPPSIF and chlorophyll content; p<0.0001), leaf area index (LAI) (R2=0.35 for canopy-GPPSIF and LAI; p<0.0001), and normalized difference vegetation index (NDVI) (R2=0.36 for canopy-GPPSIF and NDVI; p<0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.This research was supported by U.S. Department of Energy Office of Biological and Environmental Research Grant DE-SC0006951, National Science Foundation Grants DBI-959333 and AGS-1005663, and the University of Chicago and the MBL Lillie Research Innovation Award to J. Tang, National Science Foundation of China Grants (41671421) to Y. Zhang, and China Scholarship Council (CSC) to H. Yang.2017-12-1

    Celastrus orbiculatus Thunb. extracts and celastrol alleviate NAFLD by preserving mitochondrial function through activating the FGF21/AMPK/PGC-1Îą pathway

    Get PDF
    ObjectiveNon-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms.MethodsCOT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot.ResultsThe findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1Îą, PPARÎł, and SIRT3.ConclusionThese findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1Îą signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD
    • …
    corecore