231 research outputs found
Nle4DPhe7α-Melanocyte-Stimulating Hormone Increases the Eumelanin:Phaeomelanin Ratio in Cultured Human Melanocytes
In mammals, melanin exists in two chemically distinct forms: the red-yellow phaeomelanin and the brown-black eumelanin. Although administration of the pigmentary hormone α-melanocyte-stimulating hormone (αMSH) and its synthetic analogue Nle4DPhe7αMSH induces skin darkening in man, the increases in melanogenesis in cultured human melanocytes in response to these peptides are relatively small, However, it is possible that MSH affects the eumelanin:phaeomelanin ratio rather titan total cellular melanin. Thus, this study examined the specific effects of Nle4DPhe7αMSH on the two melanins in cultured human melanocytes, quantifying eumelanin and phaeomelanin by hign performance liquid chromatography. Nle4DPhe7αMSH induced significant increases in the eumelanin content of these cells while having lesser and varied effects on the levels of phaeomelanin. As a consequences the eumelanin: phaeomelanin ratio was increased in every culture. These results demonstrate that Nle4DPhe7αMSH affects melanin type in human melanocytes and suggest a possible mechanism by which this peptide induces skin darkening in man
Growth Inhibition of Re-Challenge B16 Melanoma Transplant by Conjugates of Melanogenesis Substrate and Magnetite Nanoparticles as the Basis for Developing Melanoma-Targeted Chemo-Thermo-Immunotherapy
Melanogenesis substrate, N-propionyl-cysteaminylphenol (NPrCAP), is selectively incorporated into melanoma cells and inhibits their growth by producing cytotoxic free radicals. Magnetite nanoparticles also disintegrate cancer cells and generate heat shock protein (HSP) upon exposure to an alternating magnetic field (AMF). This study tested if a chemo-thermo-immunotherapy (CTI therapy) strategy can be developed for better management of melanoma by conjugating NPrCAP on the surface of magnetite nanoparticles (NPrCAP/M). We examined the feasibility of this approach in B16 mouse melanoma and evaluated the impact of exposure temperature, frequency, and interval on the inhibition of re-challenged melanoma growth. The therapeutic protocol against the primary transplanted tumor with or without AMF exposure once a day every other day for a total of three treatments not only inhibited the growth of the primary transplant but also prevented the growth of the secondary, re-challenge transplant. The heat-generated therapeutic effect was more significant at a temperature of 43°C than either 41°C or 46°C. NPrCAP/M with AMF exposure, instead of control magnetite alone or without AMF exposure, resulted in the most significant growth inhibition of the re-challenge tumor and increased the life span of the mice. HSP70 production was greatest at 43°C compared to that with 41°C or 46°C. CD8+T cells were infiltrated at the site of the re-challenge melanoma transplant
Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates
Recent reports of nonintegumentary melanosomes in fossils hint at functions for melanin beyond color production, but the biology and evolution of internal melanins are poorly understood. Our results show that internal melanosomes are widespread in diverse fossil and modern vertebrates and have tissue-specific geometries and metal chemistries. Tissue-specific chemical signatures can persist in fossils despite some diagenetic overprint, allowing the reconstruction of internal soft-tissue anatomy in fossil vertebrates, and suggest that links between melanin and metal regulation have deep evolutionary origins in vertebrates.Recent discoveries of nonintegumentary melanosomes in extant and fossil amphibians offer potential insights into the physiological functions of melanin not directly related to color production, but the phylogenetic distribution and evolutionary history of these internal melanosomes has not been characterized systematically. Here, we present a holistic method to discriminate among melanized tissues by analyzing the anatomical distribution, morphology, and chemistry of melanosomes in various tissues in a phylogenetically broad sample of extant and fossil vertebrates. Our results show that internal melanosomes in all extant vertebrates analyzed have tissue-specific geometries and elemental signatures. Similar distinct populations of preserved melanosomes in phylogenetically diverse vertebrate fossils often map onto specific anatomical features. This approach also reveals the presence of various melanosome-rich internal tissues in fossils, providing a mechanism for the interpretation of the internal anatomy of ancient vertebrates. Collectively, these data indicate that vertebrate melanins share fundamental physiological roles in homeostasis via the scavenging and sequestering of metals and suggest that intimate links between melanin and metal metabolism in vertebrates have deep evolutionary origins
N-Propionyl-Cysteaminylphenol-Magnetite Conjugate (NPrCAP/M) Is a Nanoparticle for the Targeted Growth Suppression of Melanoma Cells
A magnetite nanoparticle, NPrCAP/M, was produced for intracellular hyperthermia treatment of melanoma by conjugating N-propionyl-cysteaminylphenol (NPrCAP) with magnetite and used for the study of selective targeting and degradation of melanoma cells. NPrCAP/M, like NPrCAP, was integrated as a substrate in the oxidative reaction by mushroom tyrosinase. Melanoma, but not non-melanoma, cells incorporated larger amounts of iron than magnetite from NPrCAP/M. When mice bearing a B16F1 melanoma and a lymphoma on opposite flanks were given NPrCAP/M, iron was observed only in B16F1 melanoma cells and iron particles (NPrCAP/M) were identified within late-stage melanosomes by electron microscopy. When cells were treated with NPrCAP/M or magnetite and heated to 43°C by an external alternating magnetic field (AMF), melanoma cells were degraded 1.7- to 5.4-fold more significantly by NPrCAP/M than by magnetite. Growth of transplanted B16 melanoma was suppressed effectively by NPrCAP/M-mediated hyperthermia, suggesting a clinical application of NPrCAP/M to lesional therapy for melanoma. Finally, melanoma cells treated with NPrCAP/M plus AMF showed little sub-G1 fraction and no caspase 3 activation, suggesting that the NPrCAP/M-mediated hyperthermia induced non-apoptotic cell death. These results suggest that NPrCAP/M may be useful in targeted therapy for melanoma by inducing non-apoptotic cell death after appropriate heating by the AMF
Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum
Screening pigments are essential for vision in animals. Vertebrates use melanins bound in melanosomes as screening pigments, whereas cephalopods are assumed to use ommochromes. Preserved eye melanosomes in the controversial fossil Tullimonstrum (Mazon Creek, IL, USA) are partitioned by size and/or shape into distinct layers. These layers resemble tissue-specific melanosome populations considered unique to the vertebrate eye. Here, we show that extant cephalopod eyes also show tissue-specific size- and/or shape-specific partitioning of melanosomes; these differ from vertebrate melanosomes in the relative abundance of trace metals and in the binding environment of copper. Chemical signatures of melanosomes in the eyes of Tullimonstrum more closely resemble those of modern cephalopods than those of vertebrates, suggesting that an invertebrate affinity for Tullimonstrum is plausible. Melanosome chemistry may thus provide insights into the phylogenetic affinities of enigmatic fossils where melanosome size and/or shape are equivocal
Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy
Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms
Taphonomic experiments resolve controls on the preservation of melanosomes and keratinous tissues in feathers
Fossils are a key source of data on the evolution of feather structure and function through deep time, but their ability to resolve macroevolutionary questions is compromised by an incomplete understanding of their taphonomy. Critically, the relative preservation potential of two key feather components, melanosomes and keratinous tissue, is not fully resolved. Recent studies suggesting that melanosomes are preferentially preserved conflict with observations that melanosomes preserve in fossil feathers as external moulds in an organic matrix. To date, there is no model to explain the latter mode of melanosome preservation. We addressed these issues by degrading feathers in systematic taphonomic experiments incorporating decay, maturation and oxidation in isolation and combination. Our results reveal that the production of mouldic melanosomes requires interactions with an oxidant and is most likely to occur prior to substantial maturation. This constrains the taphonomic conditions under which melanosomes are likely to be fossilized. Critically, our experiments also confirm that keratinous feather structures have a higher preservation potential than melanosomes under a range of diagenetic conditions, supporting hitherto controversial hypotheses that fossil feathers can retain degraded keratinous structures
A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken
Author summaryVertebrates possess two types of melanin, red/yellow pheomelanin and black/brown eumelanin. In this study, we report that the recessive Inhibitor of gold phenotype in chicken, which causes a severe defect in pheomelanin pigmentation, is associated with a mutation that most likely inactivates the COMTD1 gene. This gene encodes an O-methyltransferase enzyme and is present throughout vertebrate evolution, but is one of the many genes in vertebrate genomes for which the biological function is still poorly understood. This is the first report of a COMTD1 mutation associated with a phenotypic effect. We show that the COMTD1 protein is present in mitochondria in pigment cells. Furthermore, inactivation of the gene in a mouse pigment cell line results in a significant reduction in metabolites that are important for the synthesis of pheomelanin. We hypothesize that COMTD1 activity protects pigment cells from oxidative stress and that inactivation of this function impairs the production of pheomelanin. It is likely that COMTD1 has a similar function in other cell types. This study establishes this chicken mutation as a model for further studies of COMTD1 function.The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5(th) exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin
- …