118 research outputs found

    Feature Representation Analysis of Deep Convolutional Neural Network using Two-stage Feature Transfer -An Application for Diffuse Lung Disease Classification-

    Get PDF
    Transfer learning is a machine learning technique designed to improve generalization performance by using pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of textural medical images. During the proposed method, a model is successively trained with massive amounts of natural images, some textural images, and the target images. We applied this method to the classification task of textural X-ray computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also investigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models.Comment: Preprint of the journal article to be published in IPSJ TOM-51. Notice for the use of this material The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). This material is published on this web site with the agreement of the author (s) and the IPS

    Feature Representation Analysis of Deep Convolutional Neural Network using Two-stage Feature Transfer―An Application for Diffuse Lung Disease Classification

    Get PDF
    Transfer learning is a machine learning technique designed to improve generalization performance by using pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of textural medical images. During the proposed method, a model is successively trained with massive amounts of natural images, some textural images, and the target images. We applied this method to the classification task of textural X-ray computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also investigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models

    Semantic Characteristics Prediction of Pulmonary Nodule Using Artificial Neural Networks

    Get PDF
    Since it is difficult to choose which computer calculated features are effective to predict the malignancy of pulmonary nodules, in this study, we add a semantic-level of Artificial Neural Networks (ANNs) structure to improve intuition of features selection. The works of this study include two: 1) seeking the relationships between computer-calculated features and medical semantic concepts which could be understood by human; 2) providing an objective assessment method to predict the malignancy from semantic characteristics. We used 60 thoracic CT scans collected from the Lung Image Database Consortium (LIDC) database, in which the suspicious lesions had been delineated and annotated by 4 radiologists independently. Corresponding to the two works of this study, correlation analysis experiment and agreement experiment were performed separately.The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC\u2713), July 3-7, 2013, Osaka, Japa

    Semantic Characteristics Prediction of Pulmonary Nodule Using Artificial Neural Networks

    Get PDF
    The 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'13), July 3-7, 2013, Osaka, JapanSince it is difficult to choose which computer calculated features are effective to predict the malignancy of pulmonary nodules, in this study, we add a semantic-level of Artificial Neural Networks (ANNs) structure to improve intuition of features selection. The works of this study include two: 1) seeking the relationships between computer-calculated features and medical semantic concepts which could be understood by human; 2) providing an objective assessment method to predict the malignancy from semantic characteristics. We used 60 thoracic CT scans collected from the Lung Image Database Consortium (LIDC) database, in which the suspicious lesions had been delineated and annotated by 4 radiologists independently. Corresponding to the two works of this study, correlation analysis experiment and agreement experiment were performed separately

    Visual Grounding of Whole Radiology Reports for 3D CT Images

    Full text link
    Building a large-scale training dataset is an essential problem in the development of medical image recognition systems. Visual grounding techniques, which automatically associate objects in images with corresponding descriptions, can facilitate labeling of large number of images. However, visual grounding of radiology reports for CT images remains challenging, because so many kinds of anomalies are detectable via CT imaging, and resulting report descriptions are long and complex. In this paper, we present the first visual grounding framework designed for CT image and report pairs covering various body parts and diverse anomaly types. Our framework combines two components of 1) anatomical segmentation of images, and 2) report structuring. The anatomical segmentation provides multiple organ masks of given CT images, and helps the grounding model recognize detailed anatomies. The report structuring helps to accurately extract information regarding the presence, location, and type of each anomaly described in corresponding reports. Given the two additional image/report features, the grounding model can achieve better localization. In the verification process, we constructed a large-scale dataset with region-description correspondence annotations for 10,410 studies of 7,321 unique patients. We evaluated our framework using grounding accuracy, the percentage of correctly localized anomalies, as a metric and demonstrated that the combination of the anatomical segmentation and the report structuring improves the performance with a large margin over the baseline model (66.0% vs 77.8%). Comparison with the prior techniques also showed higher performance of our method.Comment: 14 pages, 7 figures. Accepted at MICCAI 202
    corecore