95 research outputs found

    Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region

    Get PDF
    For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method

    Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft

    Get PDF
    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system

    Robust Gain-Scheduled Fault Tolerant Control for a Transport Aircraft

    Get PDF
    This paper presents an application of robust gain-scheduled control concepts using a linear parameter-varying (LPV) control synthesis method to design fault tolerant controllers for a civil transport aircraft. To apply the robust LPV control synthesis method, the nonlinear dynamics must be represented by an LPV model, which is developed using the function substitution method over the entire flight envelope. The developed LPV model associated with the aerodynamic coefficient uncertainties represents nonlinear dynamics including those outside the equilibrium manifold. Passive and active fault tolerant controllers (FTC) are designed for the longitudinal dynamics of the Boeing 747-100/200 aircraft in the presence of elevator failure. Both FTC laws are evaluated in the full nonlinear aircraft simulation in the presence of the elevator fault and the results are compared to show pros and cons of each control law

    Gain-Scheduled Fault Tolerance Control Under False Identification

    Get PDF
    An active fault tolerant control (FTC) law is generally sensitive to false identification since the control gain is reconfigured for fault occurrence. In the conventional FTC law design procedure, dynamic variations due to false identification are not considered. In this paper, an FTC synthesis method is developed in order to consider possible variations of closed-loop dynamics under false identification into the control design procedure. An active FTC synthesis problem is formulated into an LMI optimization problem to minimize the upper bound of the induced-L2 norm which can represent the worst-case performance degradation due to false identification. The developed synthesis method is applied for control of the longitudinal motions of FASER (Free-flying Airplane for Subscale Experimental Research). The designed FTC law of the airplane is simulated for pitch angle command tracking under a false identification case

    Performance Analysis on Fault Tolerant Control System

    Get PDF
    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. In this paper, an FTC analysis framework is provided to calculate the upper bound of an induced-L(sub 2) norm of an FTC system with existence of false identification and detection time delay. The upper bound is written as a function of a fault detection time and exponential decay rates and has been used to determine which FTC law produces less performance degradation (tracking error) due to false identification. The analysis framework is applied for an FTC system of a HiMAT (Highly Maneuverable Aircraft Technology) vehicle. Index Terms fault tolerant control system, linear parameter varying system, HiMAT vehicle

    Closed-Loop Evaluation of an Integrated Failure Identification and Fault Tolerant Control System for a Transport Aircraft

    Get PDF
    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection

    Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    Get PDF
    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts

    Bias Momentum Sizing for Hovering Dual-Spin Platforms

    Get PDF
    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight

    Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems

    Get PDF
    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods

    Optimal cutoff values for anthropometric indices of obesity as discriminators of metabolic abnormalities in Korea: results from a Health Examinees study

    Get PDF
    Background Obesity is well known as a risk factor for cardiovascular disease. We aimed to determine the performance of and the optimal cutoff values for obesity indices to discriminate the presence of metabolic abnormalities as a primary risk factor for cardiovascular diseases in a Health Examinees study (HEXA). Methods The current study analyzed 134,195 participants with complete anthropometric and laboratory information in a Health Examinees study, consisting of the Korean population aged 40 to 69 years. The presence of metabolic abnormality was defined as having at least one of the following: hypertension, hyperglycemia, or dyslipidemia. The area under the receiver operating characteristic curve (AUC) and 95% confidence intervals (CIs) were calculated for body mass index, waist to hip ratio, waist to height ratio, waist circumference, and conicity index. Results The AUC of metabolic abnormalities was the highest for waist-to-height ratio (AUC [95% CIs], 0.677 [0.672–0.683] among men; 0.691 [0.687–0.694] among women), and the lowest for the C index (0.616 [0.611–0.622] among men; 0.645 [0.641–0.649] among women) among both men and women. The optimal cutoff values were 24.3 kg/m2 for the body mass index, 0.887 for the waist-to-hip ratio, 0.499 for the waist-to-height ratio, 84.4 cm for waist circumference and 1.20 m3/2/kg1/2 for the conicity index among men, and 23.4 kg/m2 for the body mass index, 0.832 for the waist-to-hip ratio, 0.496 for the waist-to-height ratio, 77.0 cm for the waist circumference and 1.18 m3/2/kg1/2 for the conicity index among women. Conclusion The waist-to-height ratio is the best index to discriminate metabolic abnormalities among middle-aged Koreans. The optimal cutoff of obesity indices is lower than the international guidelines for obesity. It would be appropriate to use the indices for abdominal obesity rather than general obesity and to consider a lower level of body mass index and waist circumference than the current guidelines to determine obesity-related health problems in Koreans.This study was supported by the Korea Centers for Disease Control and Prevention [funding codes 2004-E71004–00, 2007-E71006–00, 2005-E71011–00, 2008-E71006–00, 2005-E71009–00, 2008-E71008–00, 2006-E71001–00, 2009-E71009–00, 2006-E71004–00, 2010-E71006–00, 2006-E71010–00, 2011-E71006–00, 2006-E71003–00, 2012-E71001–00, 2007-E71004–00, and 2013-E71009–00]. The funder had a role in the design of the study and data collection. We declare that the funder had no role in the analysis or writing of the manuscript
    corecore