
Uncertainty Modeling for Robustness Analysis of Aircraft
Control Upset Prevention and Recovery Systems

Christine M. Belcastro* and Thuan H. Khong†
NASA Langley Research Center, Hampton, Virginia, 23661

Jong-Yeob Shin‡
National Institute of Aerospace, Hampton, Virginia, 23666

Harry Kwatny§ and Bor-Chin Chang**
Drexel University, Philadelphia, Pennsylvania, 19104

and

Gary J. Balas††
University of Minnesota, Minneapolis, Minnesota, 55455

Formal robustness analysis of aircraft control upset prevention and recovery systems
could play an important role in their validation and ultimate certification. Such systems
(developed for failure detection, identification, and reconfiguration, as well as upset
recovery) need to be evaluated over broad regions of the flight envelope and under extreme
flight conditions, and should include various sources of uncertainty. However, formulation
of linear fractional transformation (LFT) models for representing system uncertainty can be
very difficult for complex parameter-dependent systems. This paper describes a
preliminary LFT modeling software tool which uses a matrix-based computational approach
that can be directly applied to parametric uncertainty problems involving multivariate
matrix polynomial dependencies. Several examples are presented (including an F-16 at an
extreme flight condition, a missile model, and a generic example with numerous cross-
product terms), and comparisons are given with other LFT modeling tools that are currently
available. The LFT modeling method and preliminary software tool presented in this paper
are shown to compare favorably with these methods.

1. Introduction
ircraft loss-of-control accidents comprise the largest and most fatal aircraft accident category across all civil
transport classes, and can result from a large array of causal and contributing factors (e.g., system and

component failures, control system impairment or damage, inclement weather, inappropriate pilot inputs, etc.)
occurring either individually or in combination. Research into the characterization of the aircraft loss-of-control
phenomenon as well as loss-of-control prevention and recovery system technologies is being conducted by NASA as
part of its Aviation Safety and Security Program (AvSSP). As shown in Figure 1, loss-of-control events can involve
flight beyond normal operating conditions. Moreover, these conditions are not well modeled in current transport
simulations. Validation of both the mathematical models and the systems technologies for loss-of-control conditions
is therefore highly nontrivial.

A

* Senior Research Engineer, Dynamic Systems and Control Branch, MS308, AIAA Senior Member.
† Research Engineer, Dynamic Systems and Control Branch, MS308, AIAA Member.
‡ Staff Scientist, Robust Control, MS 930, AIAA Member.
§ Professor, Department of Mechanical Engineering & Mechanics, AIAA Member.
** Professor, Department of Mechanical Engineering & Mechanics, AIAA Member.
†† Professor, Department of Aerospace Engineering & Mechanics, AIAA Associate Fellow.

American Institute of Aeronautics and Astronautics

1

https://ntrs.nasa.gov/search.jsp?R=20050223581 2019-08-29T21:03:24+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10515716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. Current Transport Simulation and Loss-of-Control Accident Characteristics

Relative to Angles of Attack and Sideslip

Certification of loss-of-control prevention and recovery systems (including failure detection, identification, and
reconfiguration as well as upset recovery subsystems) for aircraft will require a comprehensive validation process
(integrating analysis, simulation, and experimental methods) to ensure the safety and reliability of these systems.
Robustness analysis for systems with structured uncertainty could play an important role in this process. Robustness
is a key issue in the performance of failure detection and accommodation systems. Failure detection schemes can
experience performance difficulties (such as false alarms) due to system uncertainties. Robustness of the control
system can mask faults and failures and make the detection problem more difficult. It is fairly common for
integration of failure detection and accommodation systems to be problematic if they’re designed separately.
Robustness analysis can also identify worst-case combinations of uncertainties, faults and failures for use in guided
Monte Carlo simulation and/or experimental studies, and could provide risk mitigation for high-risk flight testing.
Such testing will be conducted utilizing a dynamically scaled transport aircraft that has been developed at the NASA
Langley Research Center as part of the Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed (see
References [1] and [2]). Robustness to nonlinear parameter variations over the flight envelope and at extreme flight
conditions must also be considered. Reference [3] provides an excellent treatment of applying robustness analysis
methods to the clearance of flight control laws, and reference [4] provides a robustness analysis framework for
failure detection and accommodation systems.

Analytical robust control methods, such as the structured singular value (µ, see References [3] − [4]), require
the formulation of a linear fractional transformation (LFT) model of the uncertain system, as shown in Figure 2.

M(s)

∆(s,δ)

z w

w∆ z∆

Figure 2. Block Diagram of LFT Model

Formulation of the LFT model can be extremely difficult and time consuming, especially for aircraft problems
involving parametric uncertainties (see References [3] – [4] and [7] – [20]). In fact, the difficulty in formulating the

American Institute of Aeronautics and Astronautics

2

uncertainty model in LFT form has been a key impediment to performing robustness analyses for these systems.
This paper presents a numerical matrix-based modeling method and preliminary software tool for computing LFT
models from a linear parameter varying (LPV) model of the system. Section 2 summarizes the matrix-based
computational approach and a preliminary software tool that have been developed for obtaining LFT models for
complex systems involving parametric uncertainties, as presented in Reference [4]. Section 3 discusses the
development of LPV and LFT models for an aircraft under extreme flight conditions and provides a detailed aircraft
example as well as several additional examples. Section 4, provides a comparison to other LFT modeling tools that
are currently available. Section 5 presents some concluding remarks.

2. Numerical Parametric LFT Modeling Approach

2.1 Numerical Matrix-Based LFT Modeling Method

The LFT model to be solved in this section is depicted in Figure 3.

P R

L Q

∆(δ)

⎥
⎦

⎤
⎢
⎣

⎡
y
x

⎥
⎦
⎤

⎢
⎣
⎡

u
x

z ∆ w ∆

Figure 3. Block Diagram of LFT Modeling Problem

The matrix ∆(δ) contains the system uncertainties, and can be represented as follows for parametric uncertainties.

 ∆(δ) = diag [δ1In1, δ2In2, . . . , δmInm] (1a)

 dim[∆(δ)] = in
m

1i
n ∑

=
=∆ (1b)

 m
m21 R],,,[∈δδδ=δ (2)

The LFT equation associated with Figure 3 is given below.

 (3) Q RP)IL)S(- +∆∆−=δ 1(

 ⇒ (4) oS)(S)S(+δ=δ ∆

The matrix S(δ) is a compact representation of the system model. The matrix Q represents the nominal system
model. The interconnection matrices P, R, and L are to be determined for the uncertain component of S using the
following equation.

 R–P)IL)(S ∆∆−=δ
∆

1((5)

Note that S∆(δ) contains given system matrices which are functionally dependent on the parameters δ. A solution
for equation (5) is summarized below for S∆(δ) formulated as a multivariate polynomial matrix function of δ.
However, it should be noted that multivariate rational functions can also be formulated and solved using this
approach (see Ref. [11]).
 Equation (5) can be solved for multivariate polynomial problems by replacing the matrix inversion with a finite
series expansion and a nilpotency condition,

 S∆(δ) = L∆R + L[∆P + (∆P)2 + … + (∆P)
r
] ∆R (6)

 (∆P)r+1 = 0 (7)

where r is determined by the degree of the largest nonzero term in S∆(δ). An expanded definition of P, R, and L
containing matrix partitions associated with the δiIni blocks of ∆ given in Eqn. (2) are defined for i, j = 1, 2,..., m.

American Institute of Aeronautics and Astronautics

3

 []mLLLL 21= (8a)

 , (8b)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mR

R
R

R 2
1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

mm

m
m

P

PP
PPP

P
000

00
0 222

11211

where:

 , jnin
RPij

×
∈ inrowsn

R
i

L
×

∈ , colsnin

i
R R

×
∈ (9)

and each P main-diagonal block is nilpotent of index ηi:

 ()
ηi = 0, ηi ii

P ≤ n i , i = 1, 2, ... , m (10a)

 ηi = maximum degree of δi in S∆(δ) (10b)

The block-triangular structure of P is sufficient but not necessary for nilpotency, and other special structures can
also be found. Solution of Eqn. (6) for the matrices L, P, R and ∆(δ) can then be reduced to solving the following
set of equations.

Linear δi Terms:
 , i = 1, 2, ... , m (11)

i
iRiL S

i δ
∆=

ξth -Degree δi Terms:
 , i = 1, 2, ... , m ; ξ = 1, 2, ... , ηI (12)

ξ(δ
∆

−ξ
=

)i

1 S
i

R)
ii

P(
i

L

Crossterms:

1
2i1

1i
1iL)P(P)P(

2i2i2i1i1i1i

−ξ−ξ

Tn
R

1
Tni

)P(P
TniTniTni1Tni

−ξ

− Tni)
Tni(2i)

2i(1i)
1i

(
S ξ

δ
ξ

δ
ξ

δ∆
= (13)

 where: ξ = ξ i

1
 + ξ i

2
 + ... + ξ i

nT

 i1 = 1, 2, ... , m – (n
T
 – 1)

i2 = i1 + 1, i1 + 2, ... , m – (n
T
 – 2)

in

T
 = i1 + (n

T
 – 1), ... , m

n
T
 = number of parameters in the crossterm ≤ m

Note that the S∆ terms on the right-hand side of Eqns. (11) through (13) are the known constant matrix coefficients
associated with the indicated parameter terms in S∆(δ). Moreover, depending on the number of parameters and the
degree of each appearing in S∆(δ), there can be literally hundreds of S∆ coefficient terms and coupled matrix
equations to be solved (or more). Moreover, satisfying these equations as simultaneously as possible to take
advantage of any common structure (and reduce the resulting model dimension) while satisfying the nilpotency
condition of Eqn. (7) is highly nontrivial.

2.1.1 Solution of L, R, and Main-Diagonal Blocks of P:

 A solution for this part of the problem is given in Refs. [13] and [18], but is summarized here for completeness.
The blocks of L and R, and the main-diagonal blocks of P are solved simultaneously for each uncertain parameter δi
using the linear and ξth -degree δi terms. The solution is accomplished such that the resulting main-diagonal blocks

American Institute of Aeronautics and Astronautics

4

of P are nilpotent with the appropriate index of nilpotency equal to the maximum parameter degree in S∆(δ). This
solution is accomplished numerically with a matrix singular value decomposition (svd) by recognizing that this part
of the problem is equivalent to a 1-D state-space (minimal) realization problem and by appropriately defining the
equivalent block Hankel matrices. The solution is accomplished for each δi parameter as shown by the following
theorem.

Theorem

Consider the linear and ζth-degree δi terms of S∆(δ), which can be expanded as follows

 S∆
L,ζ

(δ) = [S∆
δi

] δi + [S∆
δi2

] δi
2 + ... + [S∆

δi
ηi

] δi
ηi (14)

and use the constant coefficient matrices of Eqn. (14) to form the block Hankel matrices defined below

]iSS[S HankelS
iiii0 ηδ∆2δ∆δ∆δ∆ = (15)

] 0iS[S HankelS
iii1 ηδ∆2δ∆δ∆ = (16)

where: (17) []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00nH

02H
nH2H1H

nH2HHHankel
1

Eqn. (16) can be constructed from (15) by shifting each block row up and filling in the bottom block row with zero
blocks. Define the matrix svd of Eqn. (15) as follows.

 T

iii
i

0
VUS δδδ

δ
∆ Σ=)V)(U(

T
i

1/2
i

1/2
ii δδδΣδ Σ= ii RL= (18)

 where:)R(rank)L(rank)S(rank ii
i

0 ==
δ

∆

Then, {Pii, Ri } is controllable and {Li, Pii } is observable, and the matrices Li, Ri, and Pii form an irreducible
realization of S∆L,ζ

(δ) as defined by Eqn. (14), where:

 [] ii L 0I rowsnL = , ⎥⎦
⎤

⎢⎣
⎡

=
0

I
R colsn

R ii (19)

 †

i
1

†
ii)R(S)L(P ii

δ
∆= (20)

and the notation (A)† designates the pseudoinverse of matrix A. The Pii matrix is nilpotent with index ηi. ¶

A proof of this theorem is provided in Reference [18].

2.1.2 Solution of P Off-Diagonal Blocks:

 The P off-diagonal blocks are each solved using the appropriate crossterms of S∆(δ), as defined by Eqn. (13).
The equation to be solved for each off-diagonal block of P is a generalized linear matrix equation. The general form
of the equation is given below for computing Pnj, where n = 1, 2, ..., m–1 and j = n+1, n+2, ... , m.

 [n]
jn nj

[n] SjBPnA δδ∆= (21)

American Institute of Aeronautics and Astronautics

5

The matrices [n]
A n , Bj, and [n]

n j
S δδ∆ in Eqn. (21) are comprised of known matrices as well as matrices that have

already been computed at this point in the solution process. The detailed equations for Block Rows 1 and 2 are
given below.

Block Row 1:

]1[

1A P1j Bj =]1[

j1
S δδ∆ (22a)

 where:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−η 11

111

111
1

]1[
1

PL

PL
L

A (22b)

Block Row 2:

]2[

2A P2j Bj =]2[

j2
S δδ∆ (23a)

 where:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−η 12

2212
]1[

1

2212
]1[

1

12
]1[

1

]1[
2

]2[
2

PPA

PPA
PA

A

A
 ,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−η 12

222

222
2

]1[
2

PL

PL
L

A (23b)

Bj Matrix Structure for Each Block Row:

 1j
jj j jj j jj

η −
j

⎡ ⎤≡ = ⎣ ⎦B R R P R P R (24)

The
[n]

n j
S δδ∆ matrices contain the constant coefficient matrices associated with the cross-product terms being

solved.

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

η
δ

η
δ

2δ
η

δδ
η

δ

η
δ2δ

2δ2δδ2δ

η
δδ

2δδ
δδ

δδ∆

j
j

ι
ij

ι
ij

ι
i

j
jijiji

j
jiji

ji

ji

]1[S

SSS

SSS

SSS

 (25a)

where: i = 1, 2, … , j-1 , j = 2, 3, … , m (i ≠ j)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

δ2δδ∆

δδ∆

δδ∆

j1

j2
j2 S

S
S

]1[

]2[,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

δ2δδ∆

δ2δδ∆

δ2δδ∆

δ2δδ∆

]2[
j1

]2[
j1

]1[
j1

j1

S

S

S

S

η

 (25b)

American Institute of Aeronautics and Astronautics

6

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

η
δ2δ

η
δ

2δ2δ
η

δδ2δ
η

δ

η
δ2δ2δ

2δ2δ2δδ2δ2δ

η
δ2δδ

2δ2δδδ2δδ

δ2δδ∆

j
j

kι
1j

kι
1j

kι
1

j
j

k
1j

k
1j

k
1

j
j

k
1j

k
1j

k
1

]k[
j1

S

SSS

SSS

SSS

 (25c)

where: k = 1, 2, … , η2

The off-diagonal block equations for Block Row 1, Eqns. (22), (24) and (25a) for i=1, solve all pair-wise cross-
product terms associated with δ1δj. The off-diagonal block equations for Block Row 2, Eqns. (23), (24), and (25) for
i=2, solve all pair-wise cross-product terms associated with δ2δj, plus all triple terms involving δ1δ2δj. The third
block row equations (not shown, but constructed similarly) solve all pair-wise crossterms associated with δ3δj, plus
all triples associated with δ1δ3δj and δ2δ3δj, plus all quadruple terms associated with δ1δ2δ3δj. Thus, the equations
for the ith block row solves the pair-wise crossterms associated with δiδj, plus all combinations of crossterms
involving δ1, δ2, …, δi and δj. Note that the solutions include all nth-degree terms. This is accomplished by the
main-diagonal blocks of P (Pii) raised to various powers up to ηi - 1, as defined by Eqn. (10b), appearing in the A
and B matrices of Eqn. (21). The general expressions for Eqn. (21) are given in Ref. [18], but details of an approach
for solving them are given below.
 Eqn. (21) is a generalized linear matrix equation of the form

 AXB = C (26)

where A, B, and C are known constant matrices. Thus, solution of the off-diagonal blocks of P can be reduced to
solving matrix equations of the form of Eqn. (26), which requires satisfaction of the following rank conditions.

 rank[A C] = rank[A] , rank[BT CT] T = rank[B] (27)

Satisfaction of the column rank condition (first) and row rank condition (second) of Eqn. (27) is accomplished
through augmentation of the dimension of the appropriate parameters, δi, in ∆, which translates to an augmentation
of the associated partitions of L, R, and P comprising the A and B matrices in Eqn. (26). This is a nontrivial task,
because columns or rows of C cannot simply be appended to A and B. For the column rank condition, the structure
of A becomes more complicated for successive block rows of P, for higher numbers of parameters, and for higher
parameter degrees. For the row rank condition, the B matrix structure is fixed, but is more complicated for higher
parameter degrees.

Another complication to performing the augmentation is that in augmenting the underlying L, R, and P matrix
partitions of A and B, the previously obtained solutions involving these partitions must be retained, as well as the
nilpotency (with the correct nilpotency index) of the main-diagonal blocks of P. Moreover, the augmentation
process must be general and implementable for any number of parameters and for any parameter degree.

The approach taken in this paper to solve the above augmentation problem is based on utilizing the structure of
the A and B matrices (i.e., involving successive powers of nilpotent matrices), and allows an arbitrary augmentation
to be performed independently of the coefficient matrices in C. This enables the satisfaction of the rank conditions
of Eqn. (27) for any problem. The basic result is given in the following Lemma, which is an extension of a Theorem
by Halmos in Ref. [21].

Lemma

Let N ∈ Rnxn be a nilpotent matrix of index q, and M ∈ Rnxm (n>m) be an arbitrary rank m matrix such that
rank(Nq-1 M) = m. Then, the columns of M, NM, … , Nq-1M are linearly independent; i.e., for n ≥ qm:

 Rank[M, NM, … , Nq-1M] = qm (28)

where [M, NM, … , Nq-1M] ∈ Rnxqm. ¶

This lemma directly applies to the B matrix given by Eqn. (24); its dual (obtained by taking transposes) can be
directly applied to the A matrix for block row 1, as given by Eqn. (22b). However, it can be shown that the lemma

American Institute of Aeronautics and Astronautics

7

can also be applied to the off-diagonal block solution for any block row by reformulating the associated A matrix to
be in the (transposed) form of Eqn. (28). Thus, arbitrary columns can be added to the columns of Li, and arbitrary
rows can be added to the rows of Rj during the augmentation process. Moreover, an arbitrary nilpotent
augmentation of the correct nilpotency index can be added to the main diagonal block partitions. The augmented
matrices become:

 ,
 i i i
aug

ˆ⎡ ⎤= ⎣ ⎦L L L i
 i
aug i

ˆ
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

R
R

R
 , ii

ii
aug ii

0

ˆ0

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

P
P

P
 (29)

where is obtained using the general description for a nilpotent matrix given in Ref. [22]. iiP̂
The general process is to augment Li and Pii to satisfy the column rank condition for block row i, and to

augment Rj and Pjj to satisfy the row rank condition for block column j. In order to retain previous solutions and to
permit arbitrary augmentations to previously computed Pij matrices, Ri (Lj) is augmented with zero rows (columns)
when Li and Pii (Rj and Pjj) are augmented to satisfy the column (row) rank condition.

2.1.3 Full P-∆ Model Solution:

Once the Li, Ri, Pii, and Pij matrices for each parameter have been determined, the full solution is assembled.
This is a simple matter of collecting the matrix partitions together into the full L, R, and P matrices defined in Eqn.
(8). The ∆ matrix is also known and given by Eqn. (2), where the number of repetitions for each parameter, ni, was
determined in solving the Li, Ri, Pii, and Pij matrices.

2.2 Description of Preliminary Software Tool

The parametric LFT modeling method described in Section 2.1 has been implemented as a preliminary software
tool. The tool has been developed for general problems involving m parameters each raised to any maximum
degree, plus all possible cross-product terms. The software was developed in Matlab, and requires Matlab 5 or
above, the Control System Toolbox (for the current reduction algorithms described in Subsection 2.2.3), and the
robust control toolbox. Subsection 2.2.1 describes the data structure and syntax for the function call, Subsection
2.2.2 describes the LFT model construction, and Subsection 2.2.3 describes a rudimentary reduction approach that is
currently included in the software.

2.2.1 Data Structure and Function Call

The main function to solve for the LFT uncertainty model is “lft_model”, which has the following syntax.

[L,P,R,Q,L_full,P_full,R_full,Q_full,delta,Snew,maxtest] = lft_model(S,tol)

The input S is an n-dimensional cell array containing the coefficient matrices, where n is the number of
parameters. The index of cell array S relates to the term, and its content is the coefficient matrix associated with that
term. Since the index of a Matlab cell array does not start with zero, the index of the cell array S is defined as the
order of the term plus one. For example, consider the following:

() [] yxSySxSSS
yxyx

23
0 23 ⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡++= ∆∆∆δ

The highest degree of x is 2 from the term , and the highest degree of is 3 from the term . If yx2 y 3y x is

considered as the first parameter and the second one, the order of parameters is y ()yx, . The cell array S would
then be entered as follows.

{ } 01,1 SS = , { }
x

SS ∆=1,2 , { }
3

4,1
y

SS ∆= and { }
yx

SS
2

2,3 ∆=

Note that the index of a cell is equal to the order of the corresponding parameter plus one. If the order of parameters
is , then and so on. Zero coefficient matrices, for example, , , , …, can be

left empty, and they will be filled with zeros by the software.

(xy,) { }
x

SS ∆=2,1
y

S∆ xy
S∆ 22 yx

S∆

American Institute of Aeronautics and Astronautics

8

The input “tol” is optional, and specifies the tolerance on the frobenius norm of the difference between the LFT
model and the LPV model. The default value of “tol” is 1e-10. The parameter “tol” will be explained more below
when the output “maxtest” is discussed.

The outputs , , L P R are cell arrays. { }iL , { }iR are associated with
ini Iδ (equation (8)), with { }jiP ,

ini Iδ and
jnj Iδ (equation (8b)). The output is a matrix; Q 0SQ = . The outputs L_full, P_full, and R_full are

matrices formed from the cells of , , L P R (equation 8), and Q_full = Q.
The output “delta” is a 1xn vector, where n is the number of parameters. The ith element of “delta” is (see

equation (1a)).
in

The output “Snew” is a cell array, which contains the cells of the input cell array S and the zero coefficient
matrices filled out by the software. If the input cell array S has zero coefficient matrices associated with terms with
higher degree than iη , the maximum degree of iδ (equation (10b)), the software will delete those cells and adjust
the index of the cell array S. If the coefficient matrices associated with one or more parameters are zero (or empty)
matrices, the software deletes all those matrices and adjusts the dimension of cell array S. The software displays
messages that the maximum degree of a parameter is reduced and/or a parameter is deleted. The parameters
subsequent to the deleted parameter are moved up to replace the deleted one. The adjusted cell array S is stored in
the output “Snew”. The input cell array S in the Matlab workspace is not altered by the software.

The output “maxtest” displays the maximum result of the comparison of the original coefficient matrices of the
LPV model with the corresponding coefficient matrices of the LFT model and the results of the nilpotency of

 using the frobenius norm. If the comparison of the LPV and LFT and/or the nilpotency of is greater
than “tol”, messages will be displayed to notify the user.

{ }iiP , { }iiP ,

2.2.2 LFT Model Construction

This section will refer to equations in this paper and in Reference [18]. Note that the notation in this paper and
that in Reference [18] are related as follows. , , , in Reference [18] are equivalent to , 11P 12P 21P 22P P R , ,

 in this paper. in Reference [18] is equivalent to in this paper , in Reference [18] to in this

paper, in Reference [18] to in this paper.

L
Q

i
P

δ21 ιL
ji

P
δδ11 ijP

j
P

δ12 jR

Let be the number of states, be the number of inputs, and be the number of outputs. The LFT model

outputs are calculated in the following steps: (1.) , (2.) main-diagonal block , , associated with the

parameter

xn un yn
Q iiP iL iR

iδ , and (3.), off-diagonal block , updating , updating . These steps are described below. ijP iL jR

Step 1: Calculate Q

From equation (3), Q is the nominal system and is equal to or 0S ()1)1,,1(SSQ
n

== …

Step 2: Calculate , and the main-diagonal blocks of iL iR P

The matrices , , and (i.e., the main-diagonal blocks of) are computed using Matlab function

“lft_svpoly” of the LFT uncertainty modeling software. The blocks , , associated with each parameter
iL iR iiP P

iiP iL iR iδ

are calculated simultaneously. The appropriate coefficient matrices are used to form
i

0
S

δ
∆ and

i
1

S
δ

∆ in

equations (15) and (16), respectively. If , the rank of
i

n
i

0
S

δ
∆ , is not zero, equations (18), (19) and (20) yield the

blocks , ii nn
ii RP ×∈ () iyx nnn

i RL ×+∈ , ()uxi nnn
i RR +×∈ . In the Matlab workspace, , , are stored

as , , , respectively. If is zero,
iiP iL iR

{ }iiP , { }iL { }iR
i

n { }iiP , , { }iL , { }iR are left empty.

American Institute of Aeronautics and Astronautics

9

Step 3: Calculate the off-diagonal blocks of P
The off-diagonal blocks of are computed using Matlab function “lft_mvcross” of the LFT uncertainty

modeling software. The formation of
P

][n
nA , , and jB][n

jn
S

δδ∆ in equation (21) is nontrivial, and equation 3.42 in

Reference [18] was used in the implementation. []n
nA in Reference [18] is split into two matrices, which are

translated into the notation in this paper as []][][nnn
n nn

PLA δδ= . The structures for][n
n

Lδ and][n
n

Pδ are discussed

in detail in Reference [18]. Forming the generalized]1[

ji
S

δδ∆ ,]2[

2 j
S

δδ∆ , …,][

21

k

j
S

δδδ∆ , … matrix partitions (as

shown in equations (25 a,b,c) for two parameters) for any number of parameters raised to an arbitrary order was also
challenging. Since each cell of cell array S is associated with a term of the LPV model, allowing the number of
parameters to change from problem to problem means that the dimension of S must change accordingly. In
addition, since the order of the uncertain parameters change from problem to problem, the maximum index of S also
changes. Placing the correct cell into the appropriate location in the matrix partitions of equations (25 a,b,c) was
accomplished using the following observation in order to avoid the use of Matlab string operations. Any cell in a
Matlab multidimensional cell array can be referred to by two methods: either by the full index of the cell or the
equivalent one-number index of the cell. Cells in a cell array in the Matlab workspace are stacked ‘column-wise’.
Cell { of cell array , }nkk ,,1 … { }nmmS ,,1 … ()i ik m≤ can be referred to as cell { }K where K is calculated as
follows.

()∑ ∏
=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

n

i

i

j
ji mkkK

2

1

1
1 1

The off-diagonal blocks of P are then calculated in the following order , , …, , , …, , …,

. A different order of calculation of the off-diagonal blocks of
12P 13P nP1 23P nP2

()(nnP 1−) P can be followed, but equation (21) and

related equations must be revised accordingly. Equation (21), which has the form of equation (26), will yield ,

, if the rank condition in equation (27) is satisfied. If the column (row) rank

condition for is not satisfied,

ijP
1,,1 −= ni … nij ,,1…+=

ijP []i
iA () in equation (21) is augmented to satisfy the column (row) rank

condition. As mentioned in section 2.1, the augmentation must retain previously obtained solutions as well as the
nilpotency of the main-diagonal blocks of

jB

P . The augmentation is described in equation (29) and in the last
paragraph of section 2.1. In this preliminary software implementation, random matrices are generated for the
arbitrary matrix augmentations. A more sophisticated approach will be considered for future work.

2.2.3 One-Dimensional Model Reduction

 A modest approach to LFT model reduction is included in the preliminary software tool. Once the LFT model is
formed, each sub-block of ∆ is treated as a one-dimensional system and “uncontrollable” and “unobservable” modes
are removed by performing the transformation provided in the Control System Toolbox. The one-dimensional
system ‘A’, ‘B’, and ‘C’ matrices are formed as follows.

{ } nkkkPAk ,,1,, …==

{ } { } { } { }[]nkPkkPkkPkRBk ,2,1, …++=

{ } { } { } { }[]kkPkPkPkLCk ,1;,2;,1; −=

The , , matrices are reduced using the controllability and observability rank tests, and the reduced

matrices are denoted as , , . Let
kA kB kC

krA , krB , krC , []nsize rankrankrankP …21= , where ranki is the result of the

rank test for the ith parameter. Then the matrices , , L P R are updated as shown below.

American Institute of Aeronautics and Astronautics

10

{ } krAkkP ,, =

{ } ():,:1, rowskr nCkL = where is the number of rows of a coefficient matrix rowsn
{ } ()colskr nBkR :1:,,= where is the number of columns of a coefficient matrix colsn

Let ():,:1,, endnCC rowskrkb += and ()endnBB colskrkb :1:,,, +=

{ } () ()() 1,,2,1,:1,:1:11:1, , −=+−= ∑ ∑ kirankiPiPCkiP ksizesizekb …

{ } () ()() nkkjjkPjkPrankBjkP sizesizekkb ,,2,1,:1:11:1,:1, , …++=++−+= ∑ ∑

This reduction process is described in more detail in Reference [11]. Other more sophisticated reduction methods
(see References [15]-[17]), will be incorporated into the next version of the software.

2.2.4 Potential Software Improvements

The software tool described in this paper is preliminary, and a number of potential improvements in its
sophistication can be made. Some of these are considered below.

• Numerical conditioning issues have not been fully considered. A more thorough evaluation and
treatment of this should be performed.

• Generating a random matrix for the augmentation was an initial simplistic approach to generating the
arbitrary augmentation matrices for solving the off-diagonal blocks of the P matrix. A more
sophisticated approach should be considered – perhaps one that makes use of the minimality criteria
defined in References [15] – [17].

• The current software tool does not include much logic for tailoring the set of equations to be solved to
the specific problem. Specific potential areas of improvement include the following.

− Simplification of the equations may be possible (and preferable relative to model dimension) for
simpler problems.

− The software currently uses an upper block triangular structure for P – which is sufficient but not
necessary for nilpotency. Allowing more flexibility in this structure could reduce the resulting
model order. For example, Reference [18] includes a problem for which an LFT model of
dimension 18 can be achieved when the P matrix is not constrained to an upper block triangular
structure (as compared to a dimension of 19 with the constraint).

• The structure of the equations being solved for the cross-product terms was formulated such that the
matrix A in equation (26) absorbs most of the cross-product term complexity. It may be possible to
reformulate the equations to balance the complexity between the A and B matrices of equation (26),
which could possibly result in lowering the LFT model dimension.

• A more sophisticated model reduction method, such as that presented in References [15] – [17], should
be incorporated into the software.

• Scaling is not currently included in the software to produce a normalized LFT. This function should be
incorporated into the software.

3. LFT Modeling Examples

Several example problems are presented in this section to illustrate the development of LPV and LFT models

using the matrix-based approach developed in this paper. Section 3.1 presents the development of these models for
an aircraft at extreme flight conditions, Section 3.2 presents a missile model problem, and Section 3.3 provides a

American Institute of Aeronautics and Astronautics

11

generic example developed to be a difficult problem involving three uncertain parameters and all associated cross-
product terms.

3.1 Uncertainty Modeling for Extreme Aircraft Flight Conditions

To illustrate uncertainty modeling for an extreme flight condition, LPV and LFT models were developed for an
F-16 aircraft near a stall bifurcation. The following sub-sections describe the development of these models. Section
3.1.1 describes the general approach for developing LPV models for extreme flight conditions, and section 3.1.2
provides the F-16 example problem.

3.1.1 Formulation of LPV Models Near Bifurcation Points

An LPV model can be formulated for extreme flight conditions at (or very near) bifurcation points using the
method proposed in Reference [24]. Consider the parameter dependent nonlinear system

 ()
()

, ,

, ,

x f x u

y g x u

µ

µ

=

=
 (30)

Where nx R∈ is the state, pu R∈ is the control, is the output, and is a parameter vector.
Parameters may include quantities that define the desired operating condition, like speed, flight path angle, altitude
or physical parameters such as weight, center of mass location, etc. We are interested in how the vehicle behaves
given different parameter values. To this end we wish to construct a family of linear time-invariant models
corresponding to different values of the parameters,

my R∈ kRµ ∈

µ .
A linear time-invariant model is obtained from equation (30) by linearizing at a specified equilibrium point.

Consequently, we first need to characterize the dependence of equilibrium points on the parameters. An equilibrium
point for the system of equations (30) is a triple ()0 0 0, ,x u µ that satisfies the conditions ()0 0 0, , 0f x u µ = and

. The set of equilibrium points is a dimensional manifold in the space . Formally, the
equilibrium manifold is defined by

()0 0 0, , 0g x u µ = k n m kR + +

 () () (){ }, , , , 0, , , 0n m kx u R f x u g x uµ µ+ += ∈ =E µ = (31)

The manifold will typically be quite complex and may not even be smooth. An example of a two parameter surface
is shown in Figure 4. At any equilibrium point, it is possible to derive a linear approximation to the system (30) in
the form

 x A x Bu
y C x Du

δ δ
δ δ

= +
= +

 (32)

Figure 4. A two parameter surface illustrates the complex structure found in the equilibrium manifold.

American Institute of Aeronautics and Astronautics

12

The parameters , , ,A B C D are obtained by evaluating the appropriate Jacobian matrices at a specified equilibrium
point . p ∈E

It is evident from Figure 4 that any attempt to express equilibrium values for ,x u as functions of the parameters
µ is inherently limited by the folds and creases in the surface – i.e., the bifurcation points. An alternative approach
can be defined in which the surface itself is parameterized so that it is possible to define functions in these new
parameters. These functions may be globally valid, but even if local, the domain need not be constrained by
bifurcation points. In Reference [24] it is shown how to obtain a local parameterization of around any point

. In this method, a parameter vector
E

0p ∈E ks R∈ is introduced so that points , where is a
neighborhood of in , are defined parametrically by

p ∈ ⊂N E N

0p E ()p p s= on a neighborhood of the origin in . In this
representation, the equilibrium state, control, and parameters are all given as functions of the new parameters

kR
s .

 () () ()0 0 0 0 0 0, ,x x s u u s sµ µ= = =

Once this parameterization of the equilibrium surface is obtained, an LPV model of the form

 () ()
() ()

x A s x B s u

y C s x D s u

δ δ

δ δ

= +

= +
 (33)

is easily constructed. A software tool has been developed in Mathematica® for accomplishing this.

3.1.2 F-16 Example

The LPV and LFT models for an F-16 example near a stall bifurcation are given in this section. Figures 5 and 6
show a portion of the equilibrium surface of an F-16 near the stall condition. Details about the dynamical behavior
of the aircraft near the bifurcation point can be found in Reference [25].

Figure 5. A portion of the equilibrium surface
for an F-16 is shown. The parameters are speed

and flight path angle V γ . Only one of the
control variables, elevator deflection eδ , is
shown.

Figure 6. Another representation of the
equilibrium surface. Slices through the surface
at constant flight path angle are shown. From left
to right 0.005, 0.0025.0,0.0025,0.005γ = − − . The
surface clearly shows stall as speed is reduced.
Notice that the stall speed increases with
increasing flight path angle.

The functions defining the equilibrium surface, () () ()0 0 0, ,x s u s sµ as well as the matrices () () () (), , ,A s B s C s D s
are obtained as polynomials in the parameters s .

F-16 LPV Model

American Institute of Aeronautics and Astronautics

13

The LPV model consists of matrices () () () ()1 2 1 2 1 2 1 2, , , , , , ,A s s B s s C s s D s s . The parameters 1 2,s s are related to
speed, V , and flight path angle, γ , through well-defined formulas, as shown below.

() ()1 2 1 2, , ,VV f s s f s sγγ= =

α = 0.873652 + 0.124836 s1 – 0.0607641 s1
2 + 0.0320992 s1

3 – 9.60292 s2
 + 10.371 s1s2 – 8.14459 s1

2s2 - 438.22 s2
2 + 690.549 s1s2

2 – 19536.8 s2
3

Th = 15064.284 + 2256.19 s1 – 1040.09 s1

2 + 745.335 s1
3 – 187438 s2

 + 180989 s1s2 – 186906 s1
2s2 – 7.8323x106 s2

2 + 1.56862x107 s1s2
2 – 4.4026x108 s2

3

dele = 0.0827526 + 0.0717976 s1 + 0.0226667 s1
2 + 0.0239419 s1

3 – 5.52297 s2
 - 2.89913 s1s2 – 5.00515 s1

2s2 + 88.8865 s2
2 + 349.239 s1s2

2 – 8145.83 s2
3

θ = 0.863652 + 0.124836 s1 – 0.0638262 s1

2 + 0.0381331 s1
3 – 10.6029 s2

 + 10.8421 s1s2 – 9.71647 s1
2s2 – 460.435 s2

2 + 825.264 s1s2
2 – 23364.5 s2

3

V = 131.475 + 1.0 s1 + 6.38958 s1
2 – 5.1431 s1

3 + 0.0 s2
 - 954.805 s1s2 + 1300.36 s1

2s2 + 35898.1 s2
2 - 108465 s1s2

2 + 2.99105x106 s2
3

γ = 0.01 + 0.0 s1 + 0.00306217 s1

2 – 0.00603397 s1
3 + 1.0 s2

 - 0.47111 s1s2 + 1.57187 s1
2s2 + 22.2155 s2

2 – 134.715 s1s2
2 + 3827.73 s2

3

Thus, each pair ()1 2,s s corresponds to a unique (),V γ . The origin () ()1 2, 0,s s = 0 corresponds to a flight condition

close to the stall bifurcation point. In particular, () () () ()1 2, 0,0 , 131.45 fps,0.01 rads s V γ= → = . Functions for V
and γ are plotted in Figures 7 and 8.

-0.5 -0.25 0.25 0.5 0.75 1
ss

131.5

132.5

133

133.5

134

V fps

Figure 7. V as a function of 1s with 2 0s = .

-0.03 -0.02 -0.01 0.01 0.02 0.03
s2

-0.1

-0.05

0.05

0.1

0.15

g- rad

Figure 8. γ as a function of 2s with . 1 0s =

The LPV model for this example is given as:

1 2 1 2(,) (,)x A s s x B s s u= +

1 2 1 2(,) (,)y C s s x D s s u= +

where the parameter dependent matrices are built as follows:

() 2
1 2 1 2 1 2 1, 00 10 01 11 20A s s AA AA s AA s AA s s AA s= + + + + +

and similarly for the others.

American Institute of Aeronautics and Astronautics

14

The LPV model has 9 states: { }, , , , , , , ,x p q r Vφ θ ψ α β= , 5 controls { }, , , ,a el er ru δ δ δ δ= Th , and 10 outputs

{ },y x γ= , and it does capture the bifurcation behavior shown in Figures 5 and 6. The detailed F-16 LPV model is
provided in the Appendix.

F-16 LFT Model

 The LFT can be obtained using the LFT modeling tool described in Section 2 by assigning the S matrix cell
array as follows:

S{1,1} = [AA00 BB00], S{2,1} = [AA10 BB10], S{1,2} = [AA01 BB01]

S{2,2} = [AA11 BB11], S{3,1} = [AA20 BB20], S{1,3} = [AA02 BB02]

S{3,2} = [AA21 BB21], S{2,3} = [AA12 BB12], S{4,1} = [AA30 BB30]

S{1,4} = [AA03 BB03]

Note that matrices C and D need not be included in S, since they do not contain uncertain components for this
example. The value of tol was set to 1 x 10-8. The resulting LFT model dimension was 67, with 27 occurrences for
s1 and 40 occurrences for s2. These results can be further reduced using more sophisticated reduction methods, as
shown in Section 4.2.

3.2 Missile Model Problem

The short period dynamics of a missile are considered in the example from Reference [27], with states angle of
attack (α) in radians and pitch rate () in radians/sec, and control input (fin deflection) (q δ) in radians. The
nonlinear equations of motion are given as follows.

() q
Umass

SMCp n +=
)(

cos7.0 22
0 αα

y

n

I
SdMCpq

2
07.0

=

where the aerodynamic coefficients are given by:

δααα nnnnn dMcbaC +⎟
⎠
⎞

⎜
⎝
⎛ +++=

3
223

δααα mmmmm dMcbaC +⎟
⎠
⎞

⎜
⎝
⎛ −−+=

3
8723

()αcos** ssMU =

The properties of the missile are defined as follows.

 Pressure at 20000 ft 2
0 /3.973 ftlbp =

 sftss /1.1037= Speed of sound at 20000 ft
 Reference area 244.0 ftS =
 ftd 75.0= Diameter
 slugmass 98.13= Mass
 2=M Mach number

American Institute of Aeronautics and Astronautics

15

 Pitch moment of inertia 25.182 ftslugI y ⋅=
The coefficients are given by:

3deg000103.0 −=na , , , 2deg00945.0 −−=nb 1deg1696.0 −−=nc 1deg034.0 −−=nd
3deg000215.0 −=ma , , 1 , 1 2deg0195.0 −−=mb deg051.0 −=mc deg206.0 −−=md

The nonlinear equations are written in quasi-LPV form as follows.

δ
αα

αα

αααα

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +++

=⎥
⎦

⎤
⎢
⎣

⎡

2

2

22

2
2

232.1
2

10207.0

0
3
87232.1

1
2

1
3

20207.0

Md

Md
q

MMcba

MMcba

q
m

n

mmm

nnn

The nominal values of M and α are 2 and 0 radians, respectively.
 The LFT model obtained for this example has a total dimension of 10 (with 4 occurrences for α and 6
occurrences for M). These results are compared to other software tools in Section 4.2.

3.3 Generic Example

 In this section, an extension of a physics-based model is considered. The LPV model for this example involves:
three uncertain parameters, one parameter with maximum degree 3 and the other two parameters with maximum
degree 2, and all associated cross-product terms. The LPV model is given below.

() 22

100002
000000
004200

100000
030000
000000

,, yxzyxS
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

xyz
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
+

000020
004200
030000

000000
030000
004000

2 yzxz
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

030000
100002
000020

004000
000000
100000

yxx 23

100030
014200
001001

601030
001101
040120

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+ 22

030041
011101
101110

002100
100010
300100

xyzx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

22

042010
030101
220011

001100
001001
010030

xzzy
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+ xyzyz

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

011021
000110
101010

010100
210010
001002

2

yzxzy 222

200010
512011
010001

000501
113001
102000

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+ 22

110101
011412
101200

101005
111110
110011

xyzzxy
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+

zxyx 33

101100
110010
011001

114010
113301
110210

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+ 2222

000101
111011
101010

011010
011101
101100

yzxzyx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−+

American Institute of Aeronautics and Astronautics

16

yzxzxy 322

001013
011012
000010

104001
003111
012100

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
+ 2323

112101
111140
121201

101103
100112
001101

zxyx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

zyxzyx 23222

101040
011002
001310

010401
511030
001021

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+ 22323

114001
210305
110021

512101
111140
151103

zyxyzx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+

The LFT model obtained for this example has a dimension of 45 (with 9 occurrences for x, 24 occurrences for y,
and 12 occurrences for z). These results are compared to other software tools in the following sub-section.

4. LFT Modeling Tool Comparison
In this section, LFT models are obtained for the examples of Section 3 using two available software tools

(developed by ONERA and MuSyn, Inc.) and the results are compared to those obtained using the matrix-based
numerical software tool presented in this paper. The LFT modeling tool developed by ONERA (see Reference [23])
and that developed by MuSyn, Inc. (see Reference [6]) are considered, and a brief description of each is provided in
subsections 4.1 and 4.2, respectively. The comparison of results is presented in subsection 4.3.

4.1 LFT Modeling Tool Developed by ONERA

The Linear Fractional Representation (LFR) toolbox was developed by J-F Magni (see Reference [23]) based on
an object-oriented realization technique (see Reference [28]). The description provided herein is taken from
Reference [23]. In the toolbox, the following LFT modeling techniques have been implemented: Morton’s method
(see Reference [8]), Horner factorization (see Reference [29]), and tree decomposition (see Reference [30]). The
tree decomposition method is recommended in Ref. [23] as being the most efficient. The software also utilizes a
symbolic method (based on Maple, or the symbolic tool within MATLAB) for algebraic manipulation. Morton’s
method can represent linear parameter dependent systems as an LFT model using singular value decomposition.
This method is applied to a polynomial parameter dependent system, including rational functional forms of the
parameter, which results in the ∆ matrix containing rational functions of the uncertain parameters (instead of the
parameters themselves). The Redheffer’s star product is then used to obtain the usual form for ∆. Horner
factorization concerns single variable polynomials, and its objective consists of avoiding calculation of all the
powers of each uncertain parameter. The tree decomposition is a generalization of the idea consisting of factorizing
parameters so that they appear a minimum number of times as is possible before proceeding to the realization. For a
detailed description of these methods, the reader is referred to Ref.[23] and its references. For the examples
presented in this paper, the tree decomposition method was used by invoking the “symtreed” command to construct
the LFT models.

The LFR toolbox also contains three different order reduction methods (see Reference [23]). The first method is
a 1-D reduction approach, which consists of considering that each uncertain parameter plays the role of 1/s. For
each parameter, a balanced realization is applied to reduce its size. The second approach is an n-D reduction method
developed by Carolyn Beck et. al. (see References [15] – [17]), which consists of considering controllability and
observability of the uncertain system. When the system matrices (A, B, C, D) have an uncontrollable or
unobservable space, the algorithm can calculate a transformation to produce a null block on the B matrix
(uncontrollable) or a null block on the C matrix (unobservable). Generally, the n-D approach is less conservative
than the 1-D approach, since it treats simultaneously all the parameters of the uncertain block [17]. The third
reduction method is the generalized Gramian approach, which consists of considering a generalized Gramian
defined in an LMI system as follows.

0
0

0
,0

12121111

21211111

<+−

>
<+−

>

TT

TT

MMYYMM
Y

MMXXMM
X

American Institute of Aeronautics and Astronautics

17

After using the similarity transformation, singular values less than the given tolerance are truncated and the order of
the model is thereby reduced. A detailed description is provided in Ref.[23] and its references.

For practical use of each reduction method, note that the n-D reduction method is computationally fast and the
user should define a tolerance level of uncontrollability and unobservability. When the tolerance level is high (e.g.,
1e-4 instead of 1e-12), the reduced LFT model may not capture the original dynamics. The user should therefore
define the appropriate tolerance level for each problem. Using the Gramian approach, the user can approximate the
system based on singular values of the Gramian (X and Y). Note, however, that the computation of the Gramian can
have a high computational cost (calculation time) to solve the LMI optimization (see Reference [23]).

In this paper, the n-D reduction method is applied to the LFT models obtained for the examples using the three
modeling tools being compared (i.e., the NASA, ONERA, and MuSyn tools). The 1-D reduction approach is also
applied to the ONERA results for comparison to the 1-D results obtained using the method presented in this paper.

4.2 LFT Modeling Tool Developed by MuSYN, Inc. (and Included in the Matlab 7.0.4 Robust Tool)

The following description about building uncertainty models using the Robust Control Toolbox in MATLAB
7.0.4 is taken from Chapter 6 of Ref.[6]. In this paper, we used the Robust Control Toolbox to generate LFT
models of the examples, using the function “ureal”. The function generates uncertain atoms for uncertain real
parameters. Uncertain atoms are used to form uncertain matrix objects and system objects. Note that each
uncertain atom is written in an LFT block. An LFT model of a matrix object is built up from uncertain atoms,
depending on the sequence of operations in their construction. Note that different ways of matrix construction in
terms of the uncertain atoms may generate different sizes of uncertainty blocks in the LFT models.

In the Robust Control Toolbox, there are several reduction methods for LFT models. The command “simplify”
or “AutoSimplify”, as an option to the function “ureal”, can reduce the uncertainty block size. The AutoSimplify
parameter can be set to “off”, “basic”, or “full”. In the “off” case, no simplification is attempted. In this paper, the
models obtained for the “off” case are referred to as having “no reduction”. In the “basic” case, fairly simple
schemes to detect and eliminate non-minimal representations are used (such as removal of zero rows and columns),
and in the “full” case, numerical-based methods similar to truncated balanced realizations are used, with a very tight
tolerance to minimize error. The AutoSimplify property of each uncertain atom dictates the types of computations
that are performed to generate an LFT model of the uncertain matrix or system.

4.3 Comparison of LFT Modeling Results

 The LFT results obtained using the three software tools for the example problems presented in Section 3 are
summarized in Table 1. It should be noted that each of the above methods produces an excellent representation of
the given LPV model both before and after model reduction‡‡. As indicated in the Table, the numerical matrix-
based method and software tool presented in this paper produced an LFT model (before reduction or after 1-D
reduction) that was comparable or lower in dimension for each of the examples than the other two tools. Models of
substantially lower order (prior to reduction) were obtained using the NASA and ONERA tools, as compared to the
MuSYN tool, for the F-16 and Generic examples – which involved the most complex LPV models. Using the n-D
reduction method developed by Carolyn Beck (see References [15] – [17]) and included in the ONERA tool, the
LFT models can be reduced to about the same low order despite what modeling tools were used. The exceptions are
that the MUSYN “full” reduction option produced a lower-order LFT for the F-16 example (by 2 parameter
repetitions) and a higher-order model for the Missile example (by 5 parameter repetitions).

‡‡ The H-infinity norm was computed for each model at corner points associated with the uncertain parameters and
over a large frequency range (0.001 – 100,000 rad/sec). The maximum deviation of the LFT and LPV models was
on the order of 1x10-5.

American Institute of Aeronautics and Astronautics

18

Table 1. Comparison of LFT Modeling Results

F-16
(V, γ)

Missile
(α, M)

Generic
(x, y, z)

 Example:

Tool:

n∆ nV nγ n∆ nα nM n∆ nx ny nz

NASA (“lft_model”)

No Reduction 86 31 55 12 4 8 94 9 64 21

1-D Reduction (NASA) 67 27 40 10 4 6 45 9 24 12

n-D Reduction
(ONERA)

55§§ 22 33 9 4 5 45 9 24 12

ONERA (“symtreed”)

No Reduction 72 24 48 11 6 5 110 9 24 77

1-D Reduction
(ONERA)

67 23 44 9 4 5 109 9 24 76

n-D Reduction
(ONERA)

56 23 33 9 4 5 46 9 24 13

MUSYN (“ureal”)

No Reduction 560 280 280 16 8 8 738 318 210 210

“Basic” Reduction
(MUSYN)

235 106 129 16 8 8 579 268 173 138

“Full” Reduction
(MUSYN)

53 22 31 14 8 6 45 9 24 12

n-D Reduction
(ONERA)

53 22 31 14 8 6 45 9 24 12

§§ Note: Reversing the order of V and γ parameters resulted in a dimension of 54 (with nγ = 22 and nV = 32) after n-

D reduction (using the ONERA tool).

American Institute of Aeronautics and Astronautics

19

 The results reported in Table 1 represent the best results that we obtained using the MuSyn and ONERA tools.
For the ONERA tool, the tree-decomposition method resulted in the LFT model of lowest dimension, whereas the
“lfrs” command produced the same LFT model dimension as the MuSyn tool with the “off” option. Moreover, both
methods (i.e., the “lfrs” in the ONERA tool and “ureal” in the MuSyn tool) yield LFT models whose reduction
depends highly on how the LPV model is represented in terms of the uncertain parameters. That is, the 1-D and n-D
reduction results using the ONERA tool and the “full” and “basic” reduction options in the MuSyn tool appear to be
highly dependent on the equation representation of the LPV model. To illustrate this, the Generic Example was
equivalently implemented using the following three representations.

LPV Representation 1: Using a For-loop statement, the equations were written in low to high order with the

parameter multiplications occurring in alphabetical order, as follows.

LPV1 = zeros(3,6);
for k= 1:3
 for j= 1:3
 for i = 1:4
 if ~isempty(S{i,j,k})
 LPV1 = LPV1 + S{i,j,k}*x^(i-1)*y^(j-1)*z^(k-1);
 end
 end
 end
end

LPV Representation 2: Without using a For-loop, the equations were written in ascending order with alphabetical

parameter order, such as x,y,z, as follows.

LPV2 = S{3,1,1}*x^2 + S{1,3,1}*y^2 + S{1,1,3}*z^2 + S{2,2,1}*x*y + S{2,1,2}*x*z +...
 S{1,2,2}*y*z + S{4,1,1}*x^3 + S{3,2,1}*x^2*y + S{3,1,2}*x^2*z + ...
 S{2,3,1}*x*y^2 + S{1,3,2}*y^2*z + S{2,1,3}*x*z^2 + S{1,2,3}*y*z^2 +...
 S{2,2,2}*x*y*z + S{3,3,1}*x^2*y^2 + S{3,1,3}*x^2*z^2 + ...
 S{1,3,3}*y^2*z^2 + S{3,2,2}*x^2*y*z + S{2,3,2}*x*y^2*z + ...
 S{2,2,3}*x*y*z^2 + S{4,2,1}*x^3*y + S{4,1,2}*x^3*z + S{3,3,2}*x^2*y^2*z +...
 S{3,2,3}*x^2*y*z^2 + S{2,3,3}*x*y^2*z^2 + S{4,2,2}*x^3*y*z + ...
 S{4,3,1}*x^3*y^2 + S{4,1,3}*x^3*z^2 + S{3,3,3}*x^2*z^2*y^2 + ...
 S{4,3,2}*x^3*y^2*z + S{4,2,3}*x^3*y*z^2 + S{4,3,3}*x^3*y^2*z^2 ;

LPV Representation 3: Without using a For-loop, the equations were written without any particular order.

LPV3 = S{3,1,1}*x^2 + S{1,3,1}*y^2 + S{1,1,3}*z^2 + S{2,2,1}*x*y + S{2,1,2}*x*z +...
 S{1,2,2}*y*z + S{4,1,1}*x^3 + S{3,2,1}*y*x^2 + S{3,1,2}*z*x^2 + ...
 S{2,3,1}*x*y^2 + S{1,3,2}*z*y^2 + S{2,1,3}*x*z^2 + S{1,2,3}*y*z^2 +...
 S{2,2,2}*x*y*z + S{3,3,1}*(x^2)*y^2 + S{3,1,3}*(x^2)*z^2 + ...
 S{1,3,3}*(y^2)*z^2 + S{3,2,2}*(x^2)*y*z + S{2,3,2}*x*y^2*z + ...
 S{2,2,3}*x*y*z^2 + S{4,2,1}*y*x^3 + S{4,1,2}*z*x^3 + S{3,3,2}*z*(x^2)*y^2 +...
 S{3,2,3}*y*(x^2)*z^2 + S{2,3,3}*x*(y^2)*z^2 + S{4,2,2}*y*z*x^3 + ...
 S{4,3,1}*(x^3)*y^2 + S{4,1,3}*(x^3)*z^2 + S{3,3,3}*(x^2)*z^2*y^2 + ...
 S{4,3,2}*z*(x^3)*y^2 + S{4,2,3}*y*(x^3)*z^2 + ...
 S{4,3,3}*(y^2)*(x^3)*z^2 ;

Although the LPV1, LPV2, and LPV3 equations are exactly the same in terms of x, y, and z, the resulting LFT
models (after reduction) were very different, as shown in Table 2. Based on the results for this example, LPV
Representation 1 produced the LFT models of lowest dimension (and were therefore included in Table 1). Note that
the ONERA tree-decomposition produced the same LFT model for each representation. The NASA method is also
impervious to the equation format, because the LPV model does not need to be written in symbolic form – although
re-defining the parameter order in the S matrix can have a minor impact on LFT model dimension for some
problems.

American Institute of Aeronautics and Astronautics

20

Table 2. LFT Modeling Results Using ONERA and MuSyn Tools for Three Equivalent
LPV Representations of the Generic Example

LPV1 LPV2 LPV3 LPV Rep.

Tool n∆ nx ny nz n∆ nx ny nz n∆ nx ny nz
ONERA
(“symtreed”)

No Reduction 110 9 24 77 110 9 24 77 110 9 24 77
1-D Reduction 109 9 24 76 109 9 24 76 109 9 24 76
n-D Reduction 46 9 24 13 46 9 24 13 46 9 24 13
ONERA
(“lfrs”)

No Reduction 738 318 210 210 738 318 210 210 738 318 210 210
1-D Reduction 445 238 148 14 448 285 135 28 471 290 135 46
n-D Reduction 45 9 24 12 57 9 30 18 96 45 27 24
MuSyn
(“ureal”)

No Reduction 738 318 210 210 738 318 210 210 738 318 210 210
Basic 579 268 173 138 632 268 182 182 608 270 169 169
Full 45 9 24 12 57 9 30 18 96 45 27 24

5. Conclusion
Methods and software tools for developing linear fractional transformation (LFT) models for uncertain systems

were considered in this paper, as a precursor to applying formal robustness analysis methods to control upset
prevention and recovery systems as part of a validation process being developed for potential use in their ultimate
certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset
recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and
should include various sources of uncertainty. However, formulation of LFT models for representing system
uncertainty can be very difficult for complex parameter-dependent systems. A numerical matrix-based LFT
modeling method and preliminary software tool were presented and evaluated in this paper for several example
problems and in comparison to other available methods and software tools. The examples included an F-16 aircraft
at an extreme flight condition (i.e., near a stall bifurcation), a missile model problem, and a generic example
designed to be a difficult modeling problem (particularly relative to cross-product terms). The numerical modeling
method and preliminary software tool presented in this paper compared favorably for each of the example problems
relative to the other methods considered. The matrix-based modeling approach therefore appears to be promising.
Several areas for further refinement of the preliminary software tool were also discussed. Further research will
focus on these refinements, as well as applying the tool to robustness analysis studies for control upset prevention
and recovery technologies. These studies will provide risk mitigation for high-risk flight testing under extreme
and/or loss-of-control flight regimes, aircraft failure and damage, and other adverse or upset conditions. These kinds
of high-risk tests will be performed at NASA Langley using a dynamically scaled transport aircraft model, as part of
the Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed. Open-loop tests will be performed to
validate and further investigate vehicle dynamics under extreme/upset conditions, and closed-loop tests will be
performed for failure accommodation, upset recovery, and damage mitigation.
 A possible advantage of the numerical LFT modeling method presented in this paper is its potential future use as
part of an online robustness analysis tool for risk mitigation during high-risk flight tests or for onboard aircraft
applications. An on-line robustness analysis tool is currently being developed to provide risk mitigation during
flight tests involving the AirSTAR Testbed, and a future extension could possibly utilize an online uncertainty
modeling capability to update the system model being used for analysis. Onboard modeling and robustness analysis
methods for future transport aircraft applications may also be feasible.

American Institute of Aeronautics and Astronautics

21

Appendix

The LPV model for the F-16 example presented in Section 3 is given as follows.

() 2
1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

0A s s AA AA s AA s AA s s AA s

AA s AA s s AA s s AA s AA s

= + + + +

+ + + + +

() 2

1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

B s s BB BB s BB s BB s s BB s

BB s BB s s BB s s BB s BB s

= + + + +

+ + + + +

0

0

0

() 2

1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

C s s CC CC s CC s CC s s CC s

CC s CC s s CC s s CC s CC s

= + + + +

+ + + + +

() 2

1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

D s s DD DD s DD s DD s s DD s

DD s DD s s DD s s DD s DD s

= + + + +

+ + + + +

The nonzero coefficient matrices are given below.

American Institute of Aeronautics and Astronautics

22

American Institute of Aeronautics and Astronautics

23

American Institute of Aeronautics and Astronautics

24

American Institute of Aeronautics and Astronautics

25

American Institute of Aeronautics and Astronautics

26

American Institute of Aeronautics and Astronautics

27

Acknowledgments

The multivariate polynomial modeling method (using orthogonal functions) developed by Gene Morelli (see

References [31] – [32]) was utilized in developing the LPV model for the F-16 aircraft example, and is a primary
component to the formulation of LPV models used at NASA Langley.

References

[1] Jordan, Thomas L., Langford, William M., and Hill, Jeffrey S.: “Airborne Subscale Transport Aircraft
Research Testbed - Aircraft Model Development”. Proceedings of the Guidance, Navigation, and Control
Conference, August, 2005.

[2] Bailey, Roger M., Hostetler, Robert W., Barnes, Kevin N., Belcastro, Celeste M., and Belcastro, Christine M.:
“Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability”. Proceedings of
the Guidance, Navigation, and Control Conference, August, 2005.

 [3] Fielding, Christopher; Varga, Andras; Bennani, Samir; and Selier, Michiel (Eds.), Advanced Techniques for the
Clearance of Flight Control Laws. Springer, 2002.

[4] Belcastro, Christine M. & Chang, B-C, “Uncertainty Modeling for Robustness Analysis of Failure Detection &
Accommodation Systems”. Proceedings of the IEEE American Control Conference, May 2002.

[5] Packard, A. (Univ of California); Doyle, J. Source: “Complex structured singular value”. Automatica, v 29, n
1, Jan, 1993, p 71-109, ISSN: 0005-1098 CODEN: ATCAA9

American Institute of Aeronautics and Astronautics

28

[6] Balas, G., Chiang, R., Packard, A., and Safonov, M. “Robust Control Toolbox User’s Guide V.3” , The
MathWorks, 2005.

[7] Morton, Blaise G., R. M. McAfoos, “A Mu-Test for Robustness Analysis of a Real-Parameter Variation
Problem”. Proceedings of the American Control Conference, pp. 135-138, 1985.

[8] Morton, B., “ New Application of mu to real-parameter Variations problems”, 24th IEEE Conference on
Decision and Control, Fort Lauderdale, Florida, Dec. 1985, pp233-238.

[9] Steinbuch, Maarten, et. al.: “Robustness Analysis for Real and Complex Perturbations Applied to an Electro-
Mechanical System”. Proceedings of the American Control Conference, 1991.

[10] Lambrechts, Paul, et. al.: “Parametric Uncertainty Modeling using LFT's”. Proceedings of the American
Control Conference, Vol. 1, pp. 267-272, 1993.

[11] Belcastro, Christine M.: “Uncertainty Modeling of Real Parameter Variations for Robust Control
Applications”. Ph.D. Dissertation, Drexel University, 1994.

[12] Belcastro, Christine M.: “Parametric Uncertainty Modeling: An Overview”. Proceedings of the American
Control Conference, 1998.

[13] Belcastro, Christine M. and Chang, B.-C.: “LFT Formulation for Multivariate Polynomial Problems”.
Proceedings of the American Control Conference, 1998.

[14] Cockburn, Juan C: “Linear Fractional Representation of Systems with Rational Uncertainty”. Proceedings of
the American Control Conference, 1998.

[15] Beck, Carolyn and D’Andrea, Raffaello, “Minimality, Controllability and Observability for Uncertain
Systems”, Proceedings of the American Control Conference, June 1997, pp 3130-3135.

[16] Beck, Carolyn and D’Andrea, Raffaello: “Computational Study and Comparisons of LFT Reducibility
Methods”. Proceedings of the American Control Conference, 1998.

[17] Beck, Carolyn and Doyle, John, “A Necessary and Sufficient Minimality Condition for Uncertain Systems”,
IEEE Transactions on Automatic Control, Vol. 44, No. 10, October 1999, pp. 1802-1813.

[18] Belcastro, Christine M.: “On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT)
Uncertainty Models for Multivariate Matrix Polynomial Problems”. NASA TM-1998-206939, November 1998.

[19] Belcastro, Christine M., Lim, Kyong B. and Morelli, Eugene A.: “Computer-Aided Uncertainty Modeling of
Nonlinear Parameter-Dependent Systems, Part I: Theoretical Overview”. Proceedings of the Computer Aided
Control System Design Conference, August 1999.

[20] Belcastro, Christine M., Lim, Kyong B. and Morelli, Eugene A.: “Computer-Aided Uncertainty Modeling of
Nonlinear Parameter-Dependent Systems, Part II: F-16 Example”. Proceedings of the Computer Aided Control
System Design, August 1999.

[21] Halmos, Paul R.: Finite-Dimensional Vector Spaces. Springer-Verlag New York, Inc., 1974
[22] Gantmacher, F. R.: The Theory of Matrices, Vol. I. Chelsea Publishing Company, New York, NY, 1959.
[23] Magni, J.-F., “Linear Fractional Representation Toolbox - Modeling, Order Reduction, and Gain Scheduling”,

ONERA Technical Report TR 6/08162 DSCD, ONERA, Systems Control and Flight Dynamics Department, July
2004.

[24] H. G. Kwatny and B.-C. Chang, "Constructing Linear Families from Parameter-Dependent Nonlinear
Dynamics," IEEE Transactions on Automatic Control, vol. 43, pp. 1143-1147, 1998.

[25] S. Thomas, H. G. Kwatny, and B. C. Chang, "Bifurcation Analysis of Flight Control Systems," presented at
16th IFAC World Congress, Prague, 2005.

[26] E. A. Morelli, Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics. Proceedings
American Control Conference, Philadelphia, pp. 997-1001, 1998.

[27] Bennani, S., Willemsen, D.M.C., and Scherer, C.W. "Robust Control of Linear Parametrically Varying
Systems with Bounded Rates", Journal of Guidance, Control, and Dynamics, Vol 21, No. 6, Nov.-Dec., 1998,
pp.916- 922.

[28] Terlouw, J.C, and Lambrechts, P.F., “ A MATLAB Toolbox for Parameter Uncertainty Modelling”, Technical
Report ,CR-93455-L, National Aerospace Laboratory NLR, Amsterdam, 1993.

American Institute of Aeronautics and Astronautics

29

[29] Varga, V. and Looye, G., “Symbolic and numerical software tools for LFT-based low order Uncertainty
modeling”, the IEEE International Symposium on computed Aided control System Design, Kohala Coast,
Hawaii, U.S.A. Aug. 1999, pp176-181.

[30] Barmish, B.R., Ackermann, A., and Hu, H.Z., “The tree structured decomposition”, Conference on Information
Sciences and Systems, Baltimore, MD. U.S.A. 1989

[31] Morelli, E.A. “System IDentification Programs for AirCraft (SIDPAC),” AIAA Paper 2002-4704, AIAA
Atmospheric Flight Mechanics Conference, Monterey, CA, August 2002.

[32] Morelli, E.A. and DeLoach, R., “Wind Tunnel Database Development using Modern Experiment Design and
Multivariate Orthogonal Functions,” AIAA Paper 2003-0653, 41st AIAA Aerospace Sciences Meeting and
Exhibit, Reno, NV, January 2003.

American Institute of Aeronautics and Astronautics

30

	Introduction
	Numerical Parametric LFT Modeling Approach
	Numerical Matrix-Based LFT Modeling Method
	Theorem
	Lemma
	Description of Preliminary Software Tool

	LFT Modeling Examples
	Uncertainty Modeling for Extreme Aircraft Flight Conditions
	Formulation of LPV Models Near Bifurcation Points
	F-16 Example
	Missile Model Problem

	LFT Modeling Tool Comparison
	LFT Modeling Tool Developed by ONERA
	LFT Modeling Tool Developed by MuSYN, Inc. (and Included in

	Example:
	F-16
	(V,)
	Missile
	Generic
	n
	nV
	n
	n
	n
	nM
	n
	nx
	ny
	nz
	NASA (“lft_model”)
	No Reduction
	86
	31
	55
	12
	4
	8
	94
	9
	64
	21
	1-D Reduction (NASA)
	67
	27
	40
	10
	4
	6
	45
	9
	24
	12
	n-D Reduction (ONERA)
	55
	22
	33
	9
	4
	5
	45
	9
	24
	12
	ONERA (“symtreed”)
	No Reduction
	72
	24
	48
	11
	6
	5
	110
	9
	24
	77
	1-D Reduction (ONERA)
	67
	23
	44
	9
	4
	5
	109
	9
	24
	76
	n-D Reduction (ONERA)
	56
	23
	33
	9
	4
	5
	46
	9
	24
	13
	MUSYN (“ureal”)
	No Reduction
	560
	280
	280
	16
	8
	8
	738
	318
	210
	210
	“Basic” Reduction (MUSYN)
	235
	106
	129
	16
	8
	8
	579
	268
	173
	138
	“Full” Reduction (MUSYN)
	53
	22
	31
	14
	8
	6
	45
	9
	24
	12
	n-D Reduction (ONERA)
	53
	22
	31
	14
	8
	6
	45
	9
	24
	12
	n
	nx
	ny
	nz
	n
	nx
	ny
	nz
	n
	nx
	ny
	nz
	Conclusion
	Appendix
	Acknowledgments
	References

