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Formal robustness analysis of aircraft control upset prevention and recovery systems 
could play an important role in their validation and ultimate certification.  Such systems 
(developed for failure detection, identification, and reconfiguration, as well as upset 
recovery) need to be evaluated over broad regions of the flight envelope and under extreme 
flight conditions, and should include various sources of uncertainty.  However, formulation 
of linear fractional transformation (LFT) models for representing system uncertainty can be 
very difficult for complex parameter-dependent systems.  This paper describes a 
preliminary LFT modeling software tool which uses a matrix-based computational approach 
that can be directly applied to parametric uncertainty problems involving multivariate 
matrix polynomial dependencies.  Several examples are presented (including an F-16 at an 
extreme flight condition, a missile model, and a generic example with numerous cross-
product terms), and comparisons are given with other LFT modeling tools that are currently 
available.  The LFT modeling method and preliminary software tool presented in this paper 
are shown to compare favorably with these methods. 

1. Introduction 
ircraft loss-of-control accidents comprise the largest and most fatal aircraft accident category across all civil 
transport classes, and can result from a large array of causal and contributing factors (e.g., system and 

component failures, control system impairment or damage, inclement weather, inappropriate pilot inputs, etc.) 
occurring either individually or in combination.  Research into the characterization of the aircraft loss-of-control 
phenomenon as well as loss-of-control prevention and recovery system technologies is being conducted by NASA as 
part of its Aviation Safety and Security Program (AvSSP).  As shown in Figure 1, loss-of-control events can involve 
flight beyond normal operating conditions.  Moreover, these conditions are not well modeled in current transport 
simulations.  Validation of both the mathematical models and the systems technologies for loss-of-control conditions 
is therefore highly nontrivial. 
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Figure 1.  Current Transport Simulation and Loss-of-Control Accident Characteristics  

Relative to Angles of Attack and Sideslip 

Certification of loss-of-control prevention and recovery systems (including failure detection, identification, and 
reconfiguration as well as upset recovery subsystems) for aircraft will require a comprehensive validation process 
(integrating analysis, simulation, and experimental methods) to ensure the safety and reliability of these systems.  
Robustness analysis for systems with structured uncertainty could play an important role in this process.  Robustness 
is a key issue in the performance of failure detection and accommodation systems.  Failure detection schemes can 
experience performance difficulties (such as false alarms) due to system uncertainties.  Robustness of the control 
system can mask faults and failures and make the detection problem more difficult.  It is fairly common for 
integration of failure detection and accommodation systems to be problematic if they’re designed separately.  
Robustness analysis can also identify worst-case combinations of uncertainties, faults and failures for use in guided 
Monte Carlo simulation and/or experimental studies, and could provide risk mitigation for high-risk flight testing.  
Such testing will be conducted utilizing a dynamically scaled transport aircraft that has been developed at the NASA 
Langley Research Center as part of the Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed (see 
References [1] and [2]).  Robustness to nonlinear parameter variations over the flight envelope and at extreme flight 
conditions must also be considered.  Reference [3] provides an excellent treatment of applying robustness analysis 
methods to the clearance of flight control laws, and reference [4] provides a robustness analysis framework for 
failure detection and accommodation systems. 

Analytical robust control methods, such as the structured singular value (µ, see References [3] − [4]), require 
the formulation of a linear fractional transformation (LFT) model of the uncertain system, as shown in Figure 2.   
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Figure 2.  Block Diagram of LFT Model 

 
Formulation of the LFT model can be extremely difficult and time consuming, especially for aircraft problems 
involving parametric uncertainties (see References [3] – [4] and [7] – [20]).  In fact, the difficulty in formulating the 
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uncertainty model in LFT form has been a key impediment to performing robustness analyses for these systems.  
This paper presents a numerical matrix-based modeling method and preliminary software tool for computing LFT 
models from a linear parameter varying (LPV) model of the system.  Section 2 summarizes the matrix-based 
computational approach and a preliminary software tool that have been developed for obtaining LFT models for 
complex systems involving parametric uncertainties, as presented in Reference [4].  Section 3 discusses the 
development of LPV and LFT models for an aircraft under extreme flight conditions and provides a detailed aircraft 
example as well as several additional examples. Section 4, provides a comparison to other LFT modeling tools that 
are currently available.  Section 5 presents some concluding remarks. 

2. Numerical Parametric LFT Modeling Approach 

2.1 Numerical Matrix-Based LFT Modeling Method 

The LFT model to be solved in this section is depicted in Figure 3. 
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Figure 3.  Block Diagram of LFT Modeling Problem 

 
The matrix ∆(δ) contains the system uncertainties, and can be represented as follows for parametric uncertainties. 

         ∆(δ)  =  diag [δ1In1, δ2In2, . . . , δmInm ]     (1a) 

                      dim[∆(δ)] = in
m

1i
n  ∑

=
=∆                   (1b) 

          m
m21 R],,,[ ∈δδδ=δ                  (2) 

The LFT equation associated with Figure 3 is given below. 

                     (3) Q RP)IL)S( - +∆∆−=δ 1(

                        ⇒                         (4) oS)(S)S( +δ=δ ∆

The matrix S(δ) is a compact representation of the system model.  The matrix Q represents the nominal system 
model.  The interconnection matrices P, R, and L are to be determined for the uncertain component of S using the 
following equation. 

 R–P)IL)(S ∆∆−=δ
∆

1(                     (5) 

Note that S∆(δ) contains given system matrices which are functionally dependent on the parameters δ.  A solution 
for equation (5) is summarized below for S∆(δ) formulated as a multivariate polynomial matrix function of δ.  
However, it should be noted that multivariate rational functions can also be formulated and solved using this 
approach (see Ref. [11]).   
 Equation (5) can be solved for multivariate polynomial problems by replacing the matrix inversion with a finite 
series expansion and a nilpotency condition, 

 S∆(δ)  =  L∆R + L[∆P + (∆P)2 + … + (∆P)
r
] ∆R      (6) 

 (∆P)r+1   =  0                               (7) 

where r is determined by the degree of the largest nonzero term in S∆(δ).  An expanded definition of P, R, and L 
containing matrix partitions associated with the δiIni blocks of ∆ given in Eqn. (2) are defined for i, j = 1, 2,..., m. 
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 ,   jnin
RPij

×
∈ inrowsn

R
i

L
×

∈  , colsnin

i
R R

×
∈    (9) 

and each P main-diagonal block is nilpotent of index ηi: 

 ( )
ηi = 0,   ηi ii

P ≤   n i ,  i = 1, 2, ... , m             (10a) 

 ηi   =  maximum degree of δi  in S∆(δ)           (10b) 

 

The block-triangular structure of P is sufficient but not necessary for nilpotency, and other special structures can 
also be found.  Solution of Eqn. (6) for the matrices L, P, R and ∆(δ) can then be reduced to solving the following 
set of equations. 
 
Linear δi Terms: 
 ,  i = 1, 2, ... , m              (11) 

i
iRiL S

i δ
∆=

ξth -Degree δi Terms: 
 ,  i = 1, 2, ... , m ;  ξ = 1, 2, ... , ηI (12) 

ξ(δ
∆

−ξ
=

)i

1 S
i

R)
ii

P(
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L

Crossterms:  
        
 

1
2i1
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     where:                           ξ  = ξ i

1
 + ξ i

2
 + ... + ξ i

nT
 

 i1 = 1, 2, ... , m – (n
T
 – 1)  

i2 = i1 + 1, i1 + 2, ... , m – (n
T
 – 2) 

 
in

T
 = i1 + (n

T
 – 1), ... , m 

n
T
  =  number of parameters in the crossterm  ≤   m 

 
Note that the S∆ terms on the right-hand side of Eqns. (11) through (13) are the known constant matrix coefficients 
associated with the indicated parameter terms in S∆(δ).  Moreover, depending on the number of parameters and the 
degree of each appearing in S∆(δ), there can be literally hundreds of S∆ coefficient terms and coupled matrix 
equations to be solved (or more).  Moreover, satisfying these equations as simultaneously as possible to take 
advantage of any common structure (and reduce the resulting model dimension) while satisfying the nilpotency 
condition of Eqn. (7) is highly nontrivial.   
 
2.1.1 Solution of L, R, and Main-Diagonal Blocks of P:  

 A solution for this part of the problem is given in Refs. [13] and [18], but is summarized here for completeness.  
The blocks of L and R, and the main-diagonal blocks of P are solved simultaneously for each uncertain parameter δi 
using the linear and ξth -degree δi terms.  The solution is accomplished such that the resulting main-diagonal blocks 
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of P  are nilpotent with the appropriate index of nilpotency equal to the maximum parameter degree in S∆(δ).  This 
solution is accomplished numerically with a matrix singular value decomposition (svd) by recognizing that this part 
of the problem is equivalent to a 1-D state-space (minimal) realization problem and by appropriately defining the 
equivalent block Hankel matrices.  The solution is accomplished for each δi parameter as shown by the following 
theorem.   

Theorem 

Consider the linear and ζth-degree δi terms of S∆(δ), which can be expanded as follows 

 S∆
L,ζ

(δ)  =  [S∆
δi

] δi  +  [S∆
δi2

] δi
2  +  ...  +  [S∆

δi
ηi

] δi
ηi   (14) 

and use the constant coefficient matrices of Eqn. (14) to form the block Hankel matrices defined below 

   ]iSS[S HankelS
iiii0 ηδ∆2δ∆δ∆δ∆ =        (15) 

 ] 0iS[S HankelS
iii1 ηδ∆2δ∆δ∆ =              (16) 

where:               (17) [ ]
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Eqn. (16) can be constructed from (15) by shifting each block row up and filling in the bottom block row with zero 
blocks.  Define the matrix svd of Eqn. (15) as follows. 
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    where:          )R(rank)L(rank)S(rank ii
i

0 ==
δ

∆  

 
Then, {Pii, Ri } is controllable and {Li, Pii } is observable, and the matrices Li, Ri, and Pii form an irreducible 
realization of S∆L,ζ

(δ) as defined by Eqn. (14), where: 

 [ ] ii L 0I rowsnL =    ,   ⎥⎦
⎤

⎢⎣
⎡

=
0

I
R colsn

R ii          (19) 

 †

i
1

†
ii )R(S)L(P ii

δ
∆=                   (20) 

and the notation (A)† designates the pseudoinverse of matrix A.  The Pii matrix is nilpotent with index ηi.    ¶ 
 
A proof of this theorem is provided in Reference [18]. 
 
2.1.2 Solution of P Off-Diagonal Blocks: 

 The P off-diagonal blocks are each solved using the appropriate crossterms of S∆(δ), as defined by Eqn. (13).  
The equation to be solved for each off-diagonal block of P is a generalized linear matrix equation.  The general form 
of the equation is given below for computing Pnj, where n = 1, 2, ..., m–1 and j = n+1, n+2, ... , m. 

 [n]
jn nj

[n] SjBPnA δδ∆=                (21) 
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The matrices [n]
A n , Bj, and [n]

n j
S δδ∆  in Eqn. (21) are comprised of known matrices as well as matrices that have 

already been computed at this point in the solution process.  The detailed equations for Block Rows 1 and 2 are 
given below.   
 
 
 

Block Row 1: 
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Block Row 2: 
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Bj Matrix Structure for Each Block Row: 

 1j
jj j jj j jj

η −
j

⎡ ⎤≡ = ⎣ ⎦B R R P R P R                 (24) 

The 
[n]

n j
S δδ∆  matrices contain the constant coefficient matrices associated with the cross-product terms being 

solved.   

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

η
δ

η
δ

2δ
η

δδ
η

δ

η
δ2δ

2δ2δδ2δ

η
δδ

2δδ
δδ

δδ∆

j
j

ι
ij

ι
ij

ι
i

j
jijiji

j
jiji

ji

ji

]1[S

SSS

SSS

SSS

           (25a) 

 
where:  i = 1, 2, … , j-1  ,  j = 2, 3, … , m  ( i ≠ j) 
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where:  k = 1, 2, … , η2 

 

The off-diagonal block equations for Block Row 1, Eqns. (22), (24) and (25a) for i=1, solve all pair-wise cross-
product terms associated with δ1δj.  The off-diagonal block equations for Block Row 2, Eqns. (23), (24), and (25) for 
i=2, solve all pair-wise cross-product terms associated with δ2δj, plus all triple terms involving δ1δ2δj.  The third 
block row equations (not shown, but constructed similarly) solve all pair-wise crossterms associated with δ3δj, plus 
all triples associated with δ1δ3δj and δ2δ3δj, plus all quadruple terms associated with δ1δ2δ3δj.  Thus, the equations 
for the ith block row solves the pair-wise crossterms associated with δiδj, plus all combinations of crossterms 
involving δ1, δ2, …, δi and δj.   Note that the solutions include all nth-degree terms.  This is accomplished by the 
main-diagonal blocks of P (Pii) raised to various powers up to ηi - 1, as defined by Eqn. (10b), appearing in the A 
and B matrices of Eqn. (21).  The general expressions for Eqn. (21) are given in Ref. [18], but details of an approach 
for solving them are given below. 
 Eqn. (21) is a generalized linear matrix equation of the form 

 AXB  = C                                  (26) 

where A, B, and C are known constant matrices.  Thus, solution of the off-diagonal blocks of P can be reduced to 
solving matrix equations of the form of Eqn. (26), which requires satisfaction of the following rank conditions. 

  rank[A  C] = rank[ A ] ,  rank[BT CT] T = rank[ B ]    (27) 

Satisfaction of the column rank condition (first) and row rank condition (second) of Eqn. (27) is accomplished 
through augmentation of the dimension of the appropriate parameters, δi, in ∆, which translates to an augmentation 
of the associated partitions of L, R, and P comprising the A and B matrices in Eqn. (26).  This is a nontrivial task, 
because columns or rows of C cannot simply be appended to A and B.  For the column rank condition, the structure 
of A becomes more complicated for successive block rows of P, for higher numbers of parameters, and for higher 
parameter degrees.  For the row rank condition, the B matrix structure is fixed, but is more complicated for higher 
parameter degrees.   

Another complication to performing the augmentation is that in augmenting the underlying L, R, and P matrix 
partitions of A and B, the previously obtained solutions involving these partitions must be retained, as well as the 
nilpotency (with the correct nilpotency index) of the main-diagonal blocks of P.  Moreover, the augmentation 
process must be general and implementable for any number of parameters and for any parameter degree. 

The approach taken in this paper to solve the above augmentation problem is based on utilizing the structure of 
the A and B matrices (i.e., involving successive powers of nilpotent matrices), and allows an arbitrary augmentation 
to be performed independently of the coefficient matrices in C.  This enables the satisfaction of the rank conditions 
of Eqn. (27) for any problem.  The basic result is given in the following Lemma, which is an extension of a Theorem 
by Halmos in Ref. [21].   
 
Lemma 

Let N ∈ Rnxn  be a nilpotent matrix of index q, and M ∈ Rnxm  (n>m) be an arbitrary rank m matrix such that 
rank(Nq-1 M) = m. Then, the columns of M, NM, … , Nq-1M  are linearly independent; i.e., for n ≥ qm: 

 Rank[M, NM, … , Nq-1M]  =  qm             (28) 

where [M, NM, … , Nq-1M] ∈ Rnxqm.      ¶ 
 

This lemma directly applies to the B matrix given by Eqn. (24); its dual (obtained by taking transposes) can be 
directly applied to the A matrix for block row 1, as given by Eqn. (22b).  However, it can be shown that the lemma 
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can also be applied to the off-diagonal block solution for any block row by reformulating the associated A matrix to 
be in the (transposed) form of Eqn. (28).  Thus, arbitrary columns can be added to the columns of Li, and arbitrary 
rows can be added to the rows of Rj during the augmentation process.  Moreover, an arbitrary nilpotent 
augmentation of the correct nilpotency index can be added to the main diagonal block partitions.  The augmented 
matrices become: 

   , 
 i i i
aug

ˆ⎡ ⎤= ⎣ ⎦L L L i
 i
aug i

ˆ
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

R
R

R
 , ii

ii
aug ii

0

ˆ0

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

P
P

P
     (29) 

where  is obtained using the general description for a nilpotent matrix given in Ref. [22].   iiP̂
The general process is to augment Li and Pii to satisfy the column rank condition for block row i, and to 

augment Rj and Pjj to satisfy the row rank condition for block column j. In order to retain previous solutions and to 
permit arbitrary augmentations to previously computed Pij matrices, Ri (Lj ) is augmented with zero rows (columns) 
when Li and Pii (Rj and Pjj ) are augmented to satisfy the column (row) rank condition.   
 
2.1.3 Full P-∆ Model Solution: 

Once the Li, Ri, Pii, and Pij matrices for each parameter have been determined, the full solution is assembled.  
This is a simple matter of collecting the matrix partitions together into the full L, R, and P matrices defined in Eqn. 
(8).  The ∆ matrix is also known and given by Eqn. (2), where the number of repetitions for each parameter, ni, was 
determined in solving the Li, Ri, Pii, and Pij matrices.   

2.2 Description of Preliminary Software Tool 

The parametric LFT modeling method described in Section 2.1 has been implemented as a preliminary software 
tool.  The tool has been developed for general problems involving m parameters each raised to any maximum 
degree, plus all possible cross-product terms.  The software was developed in Matlab, and requires  Matlab 5 or 
above, the Control System Toolbox (for the current reduction algorithms described in Subsection 2.2.3), and the 
robust control toolbox.  Subsection 2.2.1 describes the data structure and syntax for the function call, Subsection 
2.2.2 describes the LFT model construction, and Subsection 2.2.3 describes a rudimentary reduction approach that is 
currently included in the software.  
 
2.2.1 Data Structure and Function Call 
 

The main function to solve for the LFT uncertainty model is “lft_model”, which has the following syntax. 
 

[L,P,R,Q,L_full,P_full,R_full,Q_full,delta,Snew,maxtest] = lft_model(S,tol) 
 

The input S is an n-dimensional cell array containing the coefficient matrices, where n is the number of 
parameters.  The index of cell array S relates to the term, and its content is the coefficient matrix associated with that 
term.  Since the index of a Matlab cell array does not start with zero, the index of the cell array S is defined as the 
order of the term plus one.  For example, consider the following: 

( ) [ ] yxSySxSSS
yxyx

23
0 23 ⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡++= ∆∆∆δ  

The highest degree of x  is 2 from the term , and the highest degree of  is 3 from the term .  If yx2 y 3y x  is 

considered as the first parameter and  the second one, the order of parameters is y ( )yx, .  The cell array S would 
then be entered as follows. 

{ } 01,1 SS = , { }
x

SS ∆=1,2 , { }
3

4,1
y

SS ∆=  and { }
yx

SS
2

2,3 ∆=  

Note that the index of a cell is equal to the order of the corresponding parameter plus one.  If the order of parameters 
is , then  and so on.  Zero coefficient matrices, for example, , , , …, can be 

left empty, and they will be filled with zeros by the software.   

( xy, ) { }
x

SS ∆=2,1
y

S∆ xy
S∆ 22 yx

S∆
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The input “tol” is optional, and specifies the tolerance on the frobenius norm of the difference between the LFT 
model and the LPV model.  The default value of “tol” is 1e-10.  The parameter “tol” will be explained more below 
when the output “maxtest” is discussed. 

The outputs , , L P R  are cell arrays. { }iL , { }iR  are associated with 
ini Iδ  (equation (8)),   with { }jiP ,

ini Iδ  and 
jnj Iδ (equation (8b)).  The output  is a matrix; Q 0SQ = .  The outputs L_full, P_full, and R_full  are 

matrices formed from the cells of , , L P R  (equation 8), and Q_full = Q. 
The output “delta” is a 1xn vector, where n is the number of parameters.  The ith element of “delta” is  (see 

equation (1a)). 
in

The output “Snew” is a cell array, which contains the cells of the input cell array S and the zero coefficient 
matrices filled out by the software.  If the input cell array S has zero coefficient matrices associated with terms with 
higher degree than iη , the maximum degree of iδ  (equation (10b)), the software will delete those cells and adjust 
the index of the cell array S.  If the coefficient matrices associated with one or more parameters are zero (or empty) 
matrices, the software deletes all those matrices and adjusts the dimension of cell array S.  The software displays 
messages that the maximum degree of a parameter is reduced and/or a parameter is deleted.  The parameters 
subsequent to the deleted parameter are moved up to replace the deleted one.  The adjusted cell array S is stored in 
the output “Snew”.  The input cell array S in the Matlab workspace is not altered by the software. 

The output “maxtest” displays the maximum result of the comparison of the original coefficient matrices of the 
LPV model with the corresponding coefficient matrices of the LFT model and the results of the nilpotency of 

 using the frobenius norm.  If the comparison of the LPV and LFT and/or the nilpotency of  is greater 
than “tol”, messages will be displayed to notify the user. 

{ }iiP , { }iiP ,

 

2.2.2 LFT Model Construction 

This section will refer to equations in this paper and in Reference [18].  Note that the notation in this paper and 
that in Reference [18] are related as follows.  , , ,  in Reference [18] are equivalent to , 11P 12P 21P 22P P R , , 

 in this paper.   in Reference [18] is equivalent to  in this paper ,  in Reference [18] to  in this 

paper,  in Reference [18] to  in this paper. 

L
Q

i
P

δ21 ιL
ji

P
δδ11 ijP

j
P

δ12 jR

Let  be the number of states,  be the number of inputs, and  be the number of outputs.  The LFT model 

outputs are calculated in the following steps: (1.) , (2.) main-diagonal block , ,  associated with the 

parameter 

xn un yn
Q iiP iL iR

iδ , and (3.),  off-diagonal block , updating , updating .  These steps are described below. ijP iL jR

Step 1:  Calculate Q  

From equation (3), Q  is the nominal system and is equal to  or 0S ( )1)1,,1( SSQ
n

== …  

Step 2:  Calculate ,  and the main-diagonal blocks of  iL iR P

The matrices , , and  (i.e., the main-diagonal blocks of ) are computed using Matlab function 

“lft_svpoly” of the LFT uncertainty modeling software.  The blocks , ,  associated with each parameter 
iL iR iiP P

iiP iL iR iδ  

are calculated simultaneously.  The appropriate coefficient matrices are used to form 
i

0
S

δ
∆  and 

i
1

S
δ

∆  in 

equations (15) and (16), respectively.  If , the rank of  
i

n
i

0
S

δ
∆ , is not zero, equations (18), (19) and (20) yield the 

blocks , ii nn
ii RP ×∈ ( ) iyx nnn

i RL ×+∈ , ( )uxi nnn
i RR +×∈  .  In the Matlab workspace, , ,  are stored 

as , ,  , respectively.    If  is zero, 
iiP iL iR

{ }iiP , { }iL { }iR
i

n { }iiP , , { }iL , { }iR  are left empty. 
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Step 3:  Calculate the off-diagonal blocks of  P
The off-diagonal blocks of  are computed using Matlab function “lft_mvcross” of the LFT uncertainty 

modeling software.  The formation of 
P

][n
nA , , and jB ][n

jn
S

δδ∆  in equation (21) is nontrivial, and equation 3.42 in 

Reference [18] was used in the implementation.  [ ]n
nA  in Reference [18] is split into two matrices, which are 

translated into the notation in this paper as [ ] ][][ nnn
n nn

PLA δδ= .  The structures for ][n
n

Lδ  and ][n
n

Pδ  are discussed 

in detail in Reference [18].  Forming the generalized ]1[

ji
S

δδ∆ , ]2[

2 j
S

δδ∆ , …, ][

21

k

j
S

δδδ∆ , … matrix partitions (as 

shown in equations (25 a,b,c) for two parameters) for any number of parameters raised to an arbitrary order was also 
challenging.  Since each cell of cell array S is associated with a term of the LPV model, allowing the number of 
parameters to change from problem to problem means that the dimension of S must change accordingly.  In 
addition, since the order of the uncertain parameters change from problem to problem, the maximum index of S also 
changes.  Placing the correct cell into the appropriate location in the matrix partitions of equations (25 a,b,c) was 
accomplished using the following observation in order to avoid the use  of Matlab string operations.  Any cell in a 
Matlab multidimensional cell array can be referred to by two methods: either by the full index of the cell or the 
equivalent one-number index of the cell.  Cells in a cell array in the Matlab workspace are stacked ‘column-wise’.  
Cell {  of cell array , }nkk ,,1 … { }nmmS ,,1 … ( )i ik m≤  can be referred to as cell { }K  where K  is calculated as 
follows. 

( )∑ ∏
=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

n

i

i

j
ji mkkK

2

1

1
1 1  

The off-diagonal blocks of P  are then calculated in the following order , , …, , , …, , …, 

.  A different order of calculation of the off-diagonal blocks of 
12P 13P nP1 23P nP2

( )(nnP 1− ) P  can be followed, but equation (21) and 

related equations must be revised accordingly.  Equation (21), which has the form of equation (26), will yield , 

,  if the rank condition in equation (27) is satisfied.  If the column (row) rank 

condition for  is not satisfied, 

ijP
1,,1 −= ni … nij ,,1…+=

ijP [ ]i
iA  ( ) in equation (21) is augmented to satisfy the column (row) rank 

condition.  As mentioned in section 2.1, the augmentation must retain previously obtained solutions as well as the 
nilpotency of the main-diagonal blocks of 

jB

P .  The augmentation is described in equation (29) and in the last 
paragraph of section 2.1.  In this preliminary software implementation, random matrices are generated for the 
arbitrary matrix augmentations.  A more sophisticated approach will be considered for future work. 
 

2.2.3 One-Dimensional Model Reduction 

 A modest approach to LFT model reduction is included in the preliminary software tool.  Once the LFT model is 
formed, each sub-block of ∆ is treated as a one-dimensional system and “uncontrollable” and “unobservable” modes 
are removed by performing the transformation provided in the Control System Toolbox.  The one-dimensional 
system ‘A’, ‘B’, and ‘C’ matrices are formed as follows.   

 
{ } nkkkPAk ,,1,, …==  

{ } { } { } { }[ ]nkPkkPkkPkRBk ,2,1, …++=  

{ } { } { } { }[ ]kkPkPkPkLCk ,1;,2;,1; −=  
 
The , ,  matrices are reduced using the controllability and observability rank tests, and the reduced 

matrices are denoted as , , .  Let 
kA kB kC

krA , krB , krC , [ ]nsize rankrankrankP …21= , where ranki is the result of the 

rank test for the ith parameter.  Then the matrices , , L P R  are updated as shown below. 
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{ } krAkkP ,, =  

{ } ( ):,:1, rowskr nCkL =  where  is the number of rows of a coefficient matrix rowsn
{ } ( )colskr nBkR :1:,,=  where  is the number of columns of a coefficient matrix colsn

Let ( ):,:1,, endnCC rowskrkb +=  and ( )endnBB colskrkb :1:,,, +=  

{ } ( ) ( )( ) 1,,2,1,:1,:1:11:1, , −=+−= ∑ ∑ kirankiPiPCkiP ksizesizekb …  

{ } ( ) ( )( ) nkkjjkPjkPrankBjkP sizesizekkb ,,2,1,:1:11:1,:1, , …++=++−+= ∑ ∑  
 

This reduction process is described in more detail in Reference [11].  Other more sophisticated reduction methods 
(see References [15]-[17]), will be incorporated into the next version of the software. 
 

2.2.4 Potential Software Improvements 

The software tool described in this paper is preliminary, and a number of potential improvements in its 
sophistication can be made.  Some of these are considered below. 

• Numerical conditioning issues have not been fully considered.  A more thorough evaluation and 
treatment of this should be performed. 

• Generating a random matrix for the augmentation was an initial simplistic approach to generating the 
arbitrary augmentation matrices for solving the off-diagonal blocks of the P matrix. A more 
sophisticated approach should be considered – perhaps one that makes use of the minimality criteria 
defined in References [15] – [17]. 

• The current software tool does not include much logic for tailoring the set of equations to be solved to 
the specific problem.  Specific potential areas of improvement include the following. 

− Simplification of the equations may be possible (and preferable relative to model dimension) for 
simpler problems.   

− The software currently uses an upper block triangular structure for P – which is sufficient but not 
necessary for nilpotency.  Allowing more flexibility in this structure could reduce the resulting 
model order.  For example, Reference [18] includes a problem for which an LFT model of 
dimension 18 can be achieved when the P matrix is not constrained to an upper block triangular 
structure (as compared to a dimension of 19 with the constraint). 

• The structure of the equations being solved for the cross-product terms was formulated such that the 
matrix A in equation (26) absorbs most of the cross-product term complexity.  It may be possible to 
reformulate the equations to balance the complexity between the A and B matrices of equation (26), 
which could possibly result in lowering the  LFT model dimension. 

• A more sophisticated model reduction method, such as that presented in References [15] – [17], should 
be incorporated into the software. 

• Scaling is not currently included in the software to produce a normalized LFT.  This function should be 
incorporated into the software. 
 

3. LFT Modeling Examples 
 
Several example problems are presented in this section to illustrate the development of LPV and LFT models 

using the matrix-based approach developed in this paper.  Section 3.1 presents the development of these models for 
an aircraft at extreme flight conditions, Section 3.2 presents a missile model problem, and Section 3.3 provides a 
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generic example developed to be a difficult problem involving three uncertain parameters and all associated cross-
product terms. 

3.1 Uncertainty Modeling for Extreme Aircraft Flight Conditions  

To illustrate uncertainty modeling for an extreme flight condition, LPV and LFT models were developed for an 
F-16 aircraft near a stall bifurcation.  The following sub-sections describe the development of these models.  Section 
3.1.1 describes the general approach for developing LPV models for extreme flight conditions, and section 3.1.2 
provides the F-16 example problem. 

3.1.1 Formulation of LPV Models Near Bifurcation Points 

An LPV model can be formulated for extreme flight conditions at (or very near) bifurcation points using the 
method proposed in Reference [24]. Consider the parameter dependent nonlinear system 

 ( )
( )

, ,

, ,

x f x u

y g x u

µ

µ

=

=
 (30) 

Where nx R∈  is the state, pu R∈  is the control,  is the output, and  is a parameter vector. 
Parameters may include quantities that define the desired operating condition, like speed, flight path angle, altitude 
or physical parameters such as weight, center of mass location, etc. We are interested in how the vehicle behaves 
given different parameter values. To this end we wish to construct a family of linear time-invariant models 
corresponding to different values of the parameters, 

my R∈ kRµ ∈

µ . 
A linear time-invariant model is obtained from equation (30) by linearizing at a specified equilibrium point. 

Consequently, we first need to characterize the dependence of equilibrium points on the parameters. An equilibrium 
point for the system of equations (30) is a triple ( )0 0 0, ,x u µ  that satisfies the conditions ( )0 0 0, , 0f x u µ =  and 

. The set of equilibrium points is a  dimensional manifold in the space . Formally, the 
equilibrium manifold is defined by 

( )0 0 0, , 0g x u µ = k n m kR + +

 
 ( ) ( ) ( ){ }, , , , 0, , , 0n m kx u R f x u g x uµ µ+ += ∈ =E µ =  (31) 

 
The manifold will typically be quite complex and may not even be smooth. An example of a two parameter surface 
is shown in Figure 4.  At any equilibrium point, it is possible to derive a linear approximation to the system (30) in 
the form 

 x A x Bu
y C x Du

δ δ
δ δ

= +
= +

 (32) 

 

 
Figure 4. A two parameter surface illustrates the complex structure found in the equilibrium manifold. 
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The parameters , , ,A B C D  are obtained by evaluating the appropriate Jacobian matrices at a specified equilibrium 
point .   p ∈E

It is evident from Figure 4 that any attempt to express equilibrium values for ,x u  as functions of the parameters 
µ  is inherently limited by the folds and creases in the surface – i.e., the bifurcation points. An alternative approach 
can be defined in which the surface itself is parameterized so that it is possible to define functions in these new 
parameters. These functions may be globally valid, but even if local, the domain need not be constrained by 
bifurcation points. In Reference [24] it is shown how to obtain a local parameterization of  around any point 

. In this method, a parameter vector 
E

0p ∈E ks R∈  is introduced so that points , where  is a 
neighborhood of  in , are defined parametrically by 

p ∈ ⊂N E N

0p E ( )p p s=  on a neighborhood of the origin in . In this 
representation, the equilibrium state, control, and parameters are all given as functions of the new parameters 

kR
s . 

 
 ( ) ( ) ( )0 0 0 0 0 0, ,x x s u u s sµ µ= = =  
 
Once this parameterization of the equilibrium surface is obtained, an LPV model of the form 
 

 ( ) ( )
( ) ( )

x A s x B s u

y C s x D s u

δ δ

δ δ

= +

= +
 (33) 

 
is easily constructed.  A software tool has been developed in Mathematica® for accomplishing this.  

3.1.2 F-16 Example 

The LPV and LFT models for an F-16 example near a stall bifurcation are given in this section.  Figures 5 and 6 
show a portion of the equilibrium surface of an F-16 near the stall condition. Details about the dynamical behavior 
of the aircraft near the bifurcation point can be found in Reference [25]. 
 

 
Figure 5. A portion  of the equilibrium surface 
for an F-16 is shown. The parameters are speed 

and flight path angle V γ . Only one of the 
control variables, elevator deflection eδ , is 
shown. 

 
Figure 6.  Another representation of the 
equilibrium surface.  Slices through the surface 
at constant flight path angle are shown. From left 
to right 0.005, 0.0025.0,0.0025,0.005γ = − − .  The 
surface clearly shows stall as speed is reduced. 
Notice that the stall speed increases with 
increasing flight path angle. 

 
The functions defining the equilibrium surface, ( ) ( ) ( )0 0 0, ,x s u s sµ  as well as the matrices ( ) ( ) ( ) ( ), , ,A s B s C s D s  
are obtained as polynomials in the parameters s . 
 

F-16 LPV Model 
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The LPV model consists of matrices ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , , ,A s s B s s C s s D s s . The parameters 1 2,s s  are related to 
speed, V , and flight path angle, γ , through well-defined formulas, as shown below. 

( ) ( )1 2 1 2, , ,VV f s s f s sγγ= =  
 

α  =  0.873652 + 0.124836 s1 – 0.0607641 s1
2 + 0.0320992 s1

3 – 9.60292 s2 
   + 10.371 s1s2 – 8.14459 s1

2s2 - 438.22 s2
2 + 690.549 s1s2

2 – 19536.8 s2
3 

 
Th  =  15064.284 + 2256.19 s1 – 1040.09 s1

2 + 745.335 s1
3 – 187438 s2 

   + 180989 s1s2 – 186906 s1
2s2 – 7.8323x106 s2

2 + 1.56862x107 s1s2
2 – 4.4026x108 s2

3 
 

dele  =  0.0827526 + 0.0717976 s1 + 0.0226667 s1
2 + 0.0239419 s1

3 – 5.52297 s2 
   - 2.89913 s1s2 – 5.00515 s1

2s2 + 88.8865 s2
2 + 349.239 s1s2

2 – 8145.83 s2
3 

 
θ  =  0.863652 + 0.124836 s1 – 0.0638262 s1

2 + 0.0381331 s1
3 – 10.6029 s2 

   + 10.8421 s1s2 – 9.71647 s1
2s2 – 460.435 s2

2 + 825.264 s1s2
2 – 23364.5 s2

3 
 

V  =  131.475 + 1.0 s1 + 6.38958 s1
2 – 5.1431 s1

3 + 0.0 s2 
   - 954.805 s1s2 + 1300.36 s1

2s2 + 35898.1 s2
2 - 108465 s1s2

2 + 2.99105x106 s2
3 

 
γ  =  0.01 + 0.0 s1 + 0.00306217 s1

2 – 0.00603397 s1
3 + 1.0 s2 

   - 0.47111 s1s2 + 1.57187 s1
2s2 + 22.2155 s2

2 – 134.715 s1s2
2 + 3827.73 s2

3 
 
Thus, each pair ( )1 2,s s  corresponds to a unique ( ),V γ . The origin ( ) ( )1 2, 0,s s = 0  corresponds to a flight condition 

close to the stall bifurcation point. In particular, ( ) ( ) ( ) ( )1 2, 0,0 , 131.45 fps,0.01 rads s V γ= → = . Functions for V 
and γ are plotted in Figures 7 and 8. 
 

-0.5 -0.25 0.25 0.5 0.75 1
ss

131.5

132.5

133

133.5

134

V fps

 
Figure 7. V as a function of 1s  with 2 0s = . 

-0.03 -0.02 -0.01 0.01 0.02 0.03
s2

-0.1

-0.05

0.05

0.1

0.15

g- rad

 
Figure 8. γ  as a function of 2s  with . 1 0s =

 
The LPV model for this example is given as: 

 

1 2 1 2( , ) ( , )x A s s x B s s u= +  

1 2 1 2( , ) ( , )y C s s x D s s u= +  

 
where the parameter dependent matrices are built as follows: 
  

( ) 2
1 2 1 2 1 2 1, 00 10 01 11 20A s s AA AA s AA s AA s s AA s= + + + + +  

 
and similarly for the others. 
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The LPV model has 9 states: { }, , , , , , , ,x p q r Vφ θ ψ α β= , 5 controls { }, , , ,a el er ru δ δ δ δ= Th , and 10 outputs 

{ },y x γ= , and it does capture the bifurcation behavior shown in Figures 5 and 6.  The detailed F-16 LPV model is 
provided in the Appendix.   
 

F-16 LFT Model 

 The LFT can be obtained using the LFT modeling tool described in Section 2 by assigning the S matrix cell 
array as follows: 
 

S{1,1} = [AA00 BB00],   S{2,1} = [AA10 BB10],   S{1,2} = [AA01 BB01] 

S{2,2} = [AA11 BB11],   S{3,1} = [AA20 BB20],   S{1,3} = [AA02 BB02] 

S{3,2} = [AA21 BB21],   S{2,3} = [AA12 BB12],   S{4,1} = [AA30 BB30] 

S{1,4} = [AA03 BB03] 
 

Note that matrices C and D need not be included in S, since they do not contain uncertain components for this 
example.  The value of tol was set to 1 x 10-8.  The resulting LFT model dimension was 67, with 27 occurrences for 
s1 and 40 occurrences for s2.  These results can be further reduced using more sophisticated reduction methods, as 
shown in Section 4.2. 

3.2 Missile Model Problem 

The short period dynamics of a missile are considered in the example from Reference [27], with states angle of 
attack (α ) in radians and pitch rate ( ) in radians/sec, and control input (fin deflection) (q δ ) in radians.  The 
nonlinear equations of motion are given as follows. 
 

( ) q
Umass

SMCp n +=
)(

cos7.0 22
0 αα  

 

y

n

I
SdMCpq

2
07.0

=  

 
where the aerodynamic coefficients are given by: 

δααα nnnnn dMcbaC +⎟
⎠
⎞

⎜
⎝
⎛ +++=

3
223  

δααα mmmmm dMcbaC +⎟
⎠
⎞

⎜
⎝
⎛ −−+=

3
8723  

( )αcos** ssMU =  
 
The properties of the missile are defined as follows. 

   Pressure at 20000 ft 2
0 /3.973 ftlbp =

 sftss /1.1037=   Speed of sound at 20000 ft 
    Reference area 244.0 ftS =
 ftd 75.0=    Diameter 
 slugmass 98.13=   Mass 
  2=M    Mach number 
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    Pitch moment of inertia 25.182 ftslugI y ⋅=
The coefficients are given by: 
 

3deg000103.0 −=na , , ,  2deg00945.0 −−=nb 1deg1696.0 −−=nc 1deg034.0 −−=nd
3deg000215.0 −=ma , , 1 , 1  2deg0195.0 −−=mb deg051.0 −=mc deg206.0 −−=md

 
The nonlinear equations are written in quasi-LPV form as follows. 
 

δ
αα

αα

αααα

⎥
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⎥

⎦
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The nominal values of M  and α  are 2 and 0 radians, respectively. 
 The LFT model obtained for this example has a total dimension of 10 (with 4 occurrences for α and 6 
occurrences for M).  These results are compared to other software tools in Section 4.2.                  
 

3.3 Generic Example 

 In this section, an extension of a physics-based model is considered.  The LPV model for this example involves: 
three uncertain parameters, one parameter with maximum degree 3 and the other two parameters with maximum 
degree 2, and all associated cross-product terms.   The LPV model is given below.   
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+

 
 

zxyx 33

101100
110010
011001

114010
113301
110210

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+ 2222

000101
111011
101010

011010
011101
101100

yzxzyx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−+
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yzxzxy 322

001013
011012
000010

104001
003111
012100

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
+ 2323

112101
111140
121201

101103
100112
001101

zxyx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

 
 

zyxzyx 23222

101040
011002
001310

010401
511030
001021

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+ 22323

114001
210305
110021

512101
111140
151103

zyxyzx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
+

 
 

The LFT model obtained for this example has a dimension of 45 (with 9 occurrences for x, 24 occurrences for y, 
and 12 occurrences for z).  These results are compared to other software tools in the following sub-section.        

           

4. LFT Modeling Tool Comparison 
In this section, LFT models are obtained for the examples of Section 3 using two available software tools 

(developed by ONERA and MuSyn, Inc.) and the results are compared to those obtained using the matrix-based 
numerical software tool presented in this paper.  The LFT modeling tool developed by ONERA (see Reference [23]) 
and that developed by MuSyn, Inc. (see Reference [6]) are considered, and a brief description of each is provided in 
subsections 4.1 and 4.2, respectively.  The comparison of results is presented in subsection 4.3. 

4.1 LFT Modeling Tool Developed by ONERA 

The Linear Fractional Representation (LFR) toolbox was developed by J-F Magni (see Reference [23]) based on  
an object-oriented realization technique (see Reference [28]). The description provided herein is taken from 
Reference [23].  In the toolbox, the following LFT modeling techniques have been implemented: Morton’s method 
(see Reference [8]), Horner factorization (see Reference [29]), and tree decomposition (see Reference [30]).   The 
tree decomposition method is recommended in Ref. [23] as being the most efficient.  The software also utilizes a 
symbolic method (based on Maple, or the symbolic tool within MATLAB) for algebraic manipulation.  Morton’s 
method can represent linear parameter dependent systems as an LFT model using singular value decomposition.  
This method is applied to a polynomial parameter dependent system, including rational functional forms of the 
parameter, which results in the ∆ matrix containing rational functions of the uncertain parameters (instead of the 
parameters themselves).  The Redheffer’s star product is then used to obtain the usual form for ∆.  Horner 
factorization concerns single variable polynomials, and its objective consists of avoiding calculation of all the 
powers of each uncertain parameter.  The tree decomposition is a generalization of the idea consisting of factorizing 
parameters so that they appear a minimum number of times as is possible before proceeding to the realization.  For a 
detailed description of these methods, the reader is referred to Ref.[23] and its references.  For the examples 
presented in this paper, the tree decomposition method  was used by invoking the “symtreed” command to construct 
the LFT models.   

The LFR toolbox also contains three different order reduction methods (see Reference [23]). The first method is 
a 1-D reduction approach, which consists of considering that each uncertain parameter plays the role of 1/s.  For 
each parameter, a balanced realization is applied to reduce its size.  The second approach is an n-D reduction method 
developed by Carolyn Beck et. al. (see References [15] – [17]), which consists of considering controllability and 
observability of the uncertain system.  When the system matrices (A, B, C, D) have an uncontrollable or 
unobservable space, the algorithm can calculate a transformation to produce a null block on the B matrix 
(uncontrollable) or a null block on the C matrix (unobservable).  Generally, the n-D approach  is less conservative 
than the 1-D approach, since it treats simultaneously all the parameters of the uncertain block [17].  The third 
reduction method is the generalized Gramian approach, which consists of considering  a generalized Gramian 
defined in an LMI system as follows. 
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>
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After using the similarity transformation, singular values less than the given tolerance are truncated and the order of 
the model is thereby reduced.  A detailed description is provided in Ref.[23] and its references. 

For practical use of each reduction method, note that the n-D reduction method is computationally fast and the 
user should define a tolerance level of uncontrollability and unobservability.  When the tolerance level is high (e.g., 
1e-4 instead of 1e-12), the reduced LFT model may not capture the original dynamics.  The user should therefore 
define the appropriate tolerance level for each problem.  Using the Gramian approach, the user can approximate the 
system based on singular values of the Gramian (X and Y).  Note, however, that the computation of the Gramian can 
have a high computational cost (calculation time) to solve the LMI optimization (see Reference [23]). 

In this paper, the n-D reduction method is applied to the LFT models obtained for the examples using the three 
modeling tools being compared (i.e., the NASA, ONERA, and MuSyn tools).  The 1-D reduction approach is also 
applied to the ONERA results for comparison to the 1-D results obtained using the method presented in this paper.   

 

4.2 LFT Modeling Tool Developed by MuSYN, Inc. (and Included in the Matlab 7.0.4 Robust Tool) 

The following description about building uncertainty models using the Robust Control Toolbox in MATLAB 
7.0.4 is taken from Chapter 6 of Ref.[6].   In this paper,   we used the Robust Control Toolbox to generate LFT 
models of the examples, using the function “ureal”.   The function generates uncertain atoms for uncertain real 
parameters.   Uncertain atoms are used to form uncertain matrix objects and system objects.  Note that each 
uncertain atom is written in an LFT block.  An LFT model of a matrix object is built up from uncertain atoms, 
depending on the sequence of operations in their construction.   Note that different ways of matrix construction in 
terms of the uncertain atoms may generate different sizes of uncertainty blocks in the LFT models.  

In the Robust Control Toolbox, there are several reduction methods for LFT models.   The command “simplify” 
or “AutoSimplify”, as an option to the function “ureal”, can reduce the uncertainty block size.  The AutoSimplify 
parameter can be set to “off”, “basic”, or “full”.   In the “off” case, no simplification is attempted.  In this paper, the 
models obtained for the “off” case are referred to as having “no reduction”.  In the “basic” case, fairly simple 
schemes to detect and eliminate non-minimal representations are used (such as removal of zero rows and columns), 
and in the “full” case, numerical-based methods similar to truncated balanced realizations are used, with a very tight 
tolerance to minimize error.  The AutoSimplify property of each uncertain atom dictates the types of computations 
that are performed to generate an LFT model of the uncertain matrix or system.  

 

4.3 Comparison of LFT Modeling Results 

 The LFT results obtained using the three software tools for the example problems presented in Section 3 are 
summarized in Table 1.  It should be noted that each of the above methods produces an excellent representation of 
the given LPV model both before and after model reduction‡‡.  As indicated in the Table, the numerical matrix-
based method and software tool presented in this paper produced an LFT model (before reduction or after 1-D 
reduction) that was comparable or lower in dimension for each of the examples than the other two tools.   Models of 
substantially lower order (prior to reduction) were obtained using the NASA and ONERA tools, as compared to the 
MuSYN tool, for the F-16 and Generic examples – which involved the most complex LPV models.  Using the n-D 
reduction method developed by Carolyn Beck (see References [15] – [17]) and included in the ONERA tool, the 
LFT models can be reduced to about the same low order despite what modeling tools were used.  The exceptions are 
that the MUSYN “full” reduction option produced a lower-order LFT for the F-16 example (by 2 parameter 
repetitions) and a higher-order model for the Missile example (by 5 parameter repetitions).     

  

                                                           
‡‡ The H-infinity norm was computed for each model at corner points associated with the uncertain parameters and 
over a large frequency range (0.001 – 100,000 rad/sec).  The maximum deviation of the LFT and LPV models was 
on the order of 1x10-5.   
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Table 1.  Comparison of LFT Modeling Results 
 

F-16 
(V, γ) 

Missile 
(α, M) 

Generic 
(x, y, z) 

          Example: 
 
 
Tool: 

n∆ nV nγ n∆ nα nM  n∆ nx ny nz 

NASA (“lft_model”)           

No Reduction 86 31 55 12 4 8 94 9 64 21 

1-D Reduction (NASA) 67 27 40 10 4 6 45 9 24 12 

n-D Reduction 
(ONERA) 

55§§ 22 33 9 4 5 45 9 24 12 

ONERA (“symtreed”)           

No Reduction 72 24 48 11 6 5 110 9 24 77 

1-D Reduction 
(ONERA) 

67 23 44 9 4 5 109 9 24 76 

n-D Reduction 
(ONERA) 

56 23 33 9 4 5 46 9 24 13 

MUSYN (“ureal”)           

No Reduction 560 280 280 16 8 8 738 318 210 210 

“Basic” Reduction 
(MUSYN) 

235 106 129 16 8 8 579 268 173 138 

“Full” Reduction 
(MUSYN) 

53 22 31 14 8 6 45 9 24 12 

n-D Reduction 
(ONERA) 

53 22 31 14 8 6 45 9 24 12 

 

                                                           
§§ Note:  Reversing the order of V and γ parameters resulted in a dimension of 54 (with nγ = 22 and nV = 32) after n-

D reduction (using the ONERA tool). 
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 The results reported in Table 1 represent the best results that we obtained using the MuSyn and ONERA tools.  
For the ONERA tool, the tree-decomposition method resulted in the LFT model of lowest dimension, whereas the 
“lfrs” command produced the same LFT model dimension as the MuSyn tool with the “off” option.  Moreover, both 
methods (i.e., the “lfrs” in the ONERA tool and “ureal” in the MuSyn tool) yield LFT models whose reduction 
depends highly on how the LPV model is represented in terms of the uncertain parameters.  That is, the 1-D and n-D 
reduction results using the ONERA tool and the “full” and “basic” reduction options in the MuSyn tool appear to be 
highly dependent on the equation representation of the LPV model.  To illustrate this, the Generic Example was 
equivalently implemented using the following three representations.  
 
LPV Representation 1:  Using a For-loop statement,  the equations were written in low to high order with the 

parameter multiplications occurring in alphabetical order,  as follows.   
 
LPV1  =  zeros(3,6); 
for k=  1:3 
  for j=  1:3 
    for i = 1:4 
      if ~isempty(S{i,j,k}) 
        LPV1 = LPV1 + S{i,j,k}*x^(i-1)*y^(j-1)*z^(k-1); 
      end 
    end 
  end 
end 
 
LPV Representation 2: Without using a For-loop, the equations were written in ascending order with alphabetical 

parameter order, such as x,y,z, as follows. 
 
LPV2 =  S{3,1,1}*x^2       +  S{1,3,1}*y^2         +  S{1,1,3}*z^2       +  S{2,2,1}*x*y   +  S{2,1,2}*x*z +... 
      S{1,2,2}*y*z         + S{4,1,1}*x^3         + S{3,2,1}*x^2*y     + S{3,1,2}*x^2*z + ... 
      S{2,3,1}*x*y^2       + S{1,3,2}*y^2*z       + S{2,1,3}*x*z^2     + S{1,2,3}*y*z^2 +... 
      S{2,2,2}*x*y*z       + S{3,3,1}*x^2*y^2     + S{3,1,3}*x^2*z^2   + ... 
      S{1,3,3}*y^2*z^2     + S{3,2,2}*x^2*y*z     + S{2,3,2}*x*y^2*z   + ... 
      S{2,2,3}*x*y*z^2     + S{4,2,1}*x^3*y       + S{4,1,2}*x^3*z     + S{3,3,2}*x^2*y^2*z +... 
      S{3,2,3}*x^2*y*z^2   + S{2,3,3}*x*y^2*z^2   + S{4,2,2}*x^3*y*z   + ... 
      S{4,3,1}*x^3*y^2     + S{4,1,3}*x^3*z^2     + S{3,3,3}*x^2*z^2*y^2 + ...     
      S{4,3,2}*x^3*y^2*z   + S{4,2,3}*x^3*y*z^2    + S{4,3,3}*x^3*y^2*z^2 ; 
 
LPV Representation 3: Without using a For-loop, the equations were written without any particular order.  
 
LPV3 =  S{3,1,1}*x^2     + S{1,3,1}*y^2         + S{1,1,3}*z^2       + S{2,2,1}*x*y   + S{2,1,2}*x*z +... 
      S{1,2,2}*y*z         + S{4,1,1}*x^3         + S{3,2,1}*y*x^2     + S{3,1,2}*z*x^2 + ... 
      S{2,3,1}*x*y^2       + S{1,3,2}*z*y^2       + S{2,1,3}*x*z^2     + S{1,2,3}*y*z^2 +... 
      S{2,2,2}*x*y*z       + S{3,3,1}*(x^2)*y^2   + S{3,1,3}*(x^2)*z^2 + ... 
      S{1,3,3}*(y^2)*z^2   + S{3,2,2}*(x^2)*y*z   + S{2,3,2}*x*y^2*z   + ... 
      S{2,2,3}*x*y*z^2     + S{4,2,1}*y*x^3       + S{4,1,2}*z*x^3     + S{3,3,2}*z*(x^2)*y^2 +... 
      S{3,2,3}*y*(x^2)*z^2 + S{2,3,3}*x*(y^2)*z^2 + S{4,2,2}*y*z*x^3   + ... 
      S{4,3,1}*(x^3)*y^2   + S{4,1,3}*(x^3)*z^2   + S{3,3,3}*(x^2)*z^2*y^2 + ...     
      S{4,3,2}*z*(x^3)*y^2 + S{4,2,3}*y*(x^3)*z^2 + ... 
      S{4,3,3}*(y^2)*(x^3)*z^2 ; 

Although the LPV1,  LPV2,  and  LPV3 equations are exactly the same in terms of x, y, and z, the resulting  LFT 
models (after reduction) were very different, as shown in Table 2.  Based on the results for this example, LPV 
Representation 1 produced the LFT models of lowest dimension (and were therefore included in Table 1).  Note that 
the ONERA tree-decomposition produced the same LFT model for each representation.  The NASA method is also 
impervious to the equation format, because the LPV model does not need to be written in symbolic form – although 
re-defining the parameter order in the S matrix can have a minor impact on LFT model dimension for some 
problems.   
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Table 2.  LFT Modeling Results Using ONERA and MuSyn Tools for Three Equivalent 
LPV Representations of the Generic Example  

 
LPV1 LPV2 LPV3            LPV Rep. 

 
Tool n∆ nx ny nz n∆ nx ny nz n∆ nx ny nz 
ONERA 
(“symtreed”) 

            

No Reduction 110 9 24 77 110 9 24 77 110 9 24 77 
1-D Reduction 109 9 24 76 109 9 24 76 109 9 24 76 
n-D Reduction 46 9 24 13 46 9 24 13 46 9 24 13 
ONERA 
(“lfrs”) 

            

No Reduction 738 318 210 210 738 318 210 210 738 318 210 210 
1-D Reduction 445 238 148 14 448 285 135 28 471 290 135 46 
n-D Reduction 45 9 24 12 57 9 30 18 96 45 27 24 
MuSyn 
(“ureal”) 

            

No Reduction 738 318 210 210 738 318 210 210 738 318 210 210 
Basic 579 268 173 138 632 268 182 182 608 270 169 169 
Full 45 9 24 12 57 9 30 18 96 45 27 24 

 
                      

5. Conclusion 
Methods and software tools for developing linear fractional transformation (LFT) models for uncertain systems 

were considered in this paper, as a precursor to applying formal robustness analysis methods to control upset 
prevention and recovery systems as part of a validation process being developed for potential use in their ultimate 
certification.  Such systems (developed for failure detection, identification, and reconfiguration, as well as upset 
recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and 
should include various sources of uncertainty.  However, formulation of LFT models for representing system 
uncertainty can be very difficult for complex parameter-dependent systems.  A numerical matrix-based LFT 
modeling method and preliminary software tool were presented and evaluated in this paper for several example 
problems and in comparison to other available methods and software tools.  The examples included an F-16 aircraft 
at an extreme flight condition (i.e., near a stall bifurcation), a missile model problem, and a generic example 
designed to be a difficult modeling problem (particularly relative to cross-product terms).  The numerical modeling 
method and preliminary software tool presented in this paper compared favorably for each of the example problems 
relative to the other methods considered.  The matrix-based modeling approach therefore appears to be promising.  
Several areas for further refinement of the preliminary software tool were also discussed.  Further research will 
focus on these refinements, as well as applying the tool to robustness analysis studies for control upset prevention 
and recovery technologies.  These studies will provide risk mitigation for high-risk flight testing under extreme 
and/or loss-of-control flight regimes, aircraft failure and damage, and other adverse or upset conditions.  These kinds 
of high-risk tests will be performed at NASA Langley using a dynamically scaled transport aircraft model, as part of 
the Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed. Open-loop tests will be performed to 
validate and further investigate vehicle dynamics under extreme/upset conditions, and closed-loop tests will be 
performed for failure accommodation, upset recovery, and damage mitigation.   
 A possible advantage of the numerical LFT modeling method presented in this paper is its potential future use as 
part of an online robustness analysis tool for risk mitigation during high-risk flight tests or for onboard aircraft 
applications.  An on-line robustness analysis tool is currently being developed to provide risk mitigation during 
flight tests involving the AirSTAR Testbed, and a future extension could possibly utilize an online uncertainty 
modeling capability to update the system model being used for analysis.  Onboard modeling and robustness analysis 
methods for future transport aircraft applications may also be feasible.   
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Appendix 
 
The LPV model for the F-16 example presented in Section 3 is given as follows. 
 

( ) 2
1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

0A s s AA AA s AA s AA s s AA s

AA s AA s s AA s s AA s AA s

= + + + +

+ + + + +
 

 
( ) 2

1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

B s s BB BB s BB s BB s s BB s

BB s BB s s BB s s BB s BB s

= + + + +

+ + + + +

0

0

0

 

 
( ) 2

1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

C s s CC CC s CC s CC s s CC s

CC s CC s s CC s s CC s CC s

= + + + +

+ + + + +
 

 
( ) 2

1 2 1 2 1 2 1

2 2 2 3 3
2 1 2 1 2 1 2

, 00 10 01 11 2

02 21 12 30 03

D s s DD DD s DD s DD s s DD s

DD s DD s s DD s s DD s DD s

= + + + +

+ + + + +
 

 
The nonzero coefficient matrices are given below. 

 

 

 
American Institute of Aeronautics and Astronautics 

 

22



 

 
 

 
 

 
 

 
American Institute of Aeronautics and Astronautics 

 

23



 
 

 
 

 

 

 
American Institute of Aeronautics and Astronautics 

 

24



 
 

 
 

 

 
American Institute of Aeronautics and Astronautics 

 

25



 
 

 
 

 

 
American Institute of Aeronautics and Astronautics 

 

26



 
 

 
 

 

 
American Institute of Aeronautics and Astronautics 

 

27



 

 

Acknowledgments 
 
The multivariate polynomial modeling method (using orthogonal functions) developed by Gene Morelli (see 

References [31] – [32]) was utilized in developing the LPV model for the F-16 aircraft example, and is a primary 
component to the formulation of LPV models used at NASA Langley.   

 

References 
 

[1] Jordan, Thomas L., Langford, William M., and Hill, Jeffrey S.:  “Airborne Subscale Transport Aircraft 
Research Testbed - Aircraft Model Development”.  Proceedings of the Guidance, Navigation, and Control 
Conference, August, 2005.   

[2] Bailey, Roger M., Hostetler, Robert W., Barnes, Kevin N., Belcastro, Celeste M., and Belcastro, Christine M.: 
“Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability”.  Proceedings of 
the Guidance, Navigation, and Control Conference, August, 2005.   

 [3]  Fielding, Christopher; Varga, Andras; Bennani, Samir; and Selier, Michiel (Eds.),  Advanced Techniques for the 
Clearance of Flight Control Laws.   Springer, 2002. 

[4] Belcastro, Christine M. & Chang, B-C, “Uncertainty Modeling for Robustness Analysis of Failure Detection & 
Accommodation Systems”.  Proceedings of the IEEE American Control Conference, May 2002. 

[5] Packard, A. (Univ of California); Doyle, J. Source: “Complex structured singular value”.  Automatica, v 29, n 
1, Jan, 1993, p 71-109, ISSN: 0005-1098 CODEN: ATCAA9 

 
American Institute of Aeronautics and Astronautics 

 

28



[6] Balas, G., Chiang, R.,  Packard, A., and Safonov, M. “Robust Control Toolbox User’s Guide V.3” ,  The 
MathWorks,  2005. 

[7] Morton, Blaise G., R. M. McAfoos, “A Mu-Test for Robustness Analysis of a Real-Parameter Variation 
Problem”.  Proceedings of the American Control Conference, pp. 135-138, 1985. 

[8] Morton, B., “ New Application of mu to real-parameter Variations problems”,  24th IEEE Conference on 
Decision and Control,  Fort Lauderdale, Florida, Dec. 1985,  pp233-238. 

[9] Steinbuch, Maarten, et. al.: “Robustness Analysis for Real and Complex Perturbations Applied to an Electro-
Mechanical System”.  Proceedings of the American Control Conference, 1991. 

[10] Lambrechts, Paul, et. al.: “Parametric Uncertainty Modeling using LFT's”.  Proceedings of the American 
Control Conference, Vol. 1, pp. 267-272, 1993. 

[11] Belcastro, Christine M.:  “Uncertainty Modeling of Real Parameter Variations for Robust Control 
Applications”.  Ph.D. Dissertation, Drexel University, 1994. 

[12] Belcastro, Christine M.:  “Parametric Uncertainty Modeling: An Overview”.  Proceedings of the American 
Control Conference, 1998. 

[13] Belcastro, Christine M. and Chang, B.-C.:  “LFT Formulation for Multivariate Polynomial Problems”.  
Proceedings of the American Control Conference, 1998. 

[14] Cockburn, Juan C:  “Linear Fractional Representation of Systems with Rational Uncertainty”.  Proceedings of 
the American Control Conference, 1998. 

[15] Beck, Carolyn and D’Andrea, Raffaello, “Minimality, Controllability and Observability for Uncertain 
Systems”, Proceedings of the American Control Conference, June 1997, pp 3130-3135. 

[16] Beck, Carolyn and D’Andrea, Raffaello: “Computational Study and Comparisons of LFT Reducibility 
Methods”.  Proceedings of the American Control Conference, 1998. 

[17] Beck, Carolyn and Doyle, John, “A Necessary and Sufficient Minimality Condition for Uncertain Systems”, 
IEEE Transactions on Automatic Control, Vol. 44, No. 10, October 1999, pp. 1802-1813. 

[18] Belcastro, Christine M.: “On the Numerical Formulation of Parametric Linear Fractional Transformation (LFT) 
Uncertainty Models for Multivariate Matrix Polynomial Problems”.  NASA TM-1998-206939, November 1998. 

[19] Belcastro, Christine M., Lim, Kyong B. and Morelli, Eugene A.: “Computer-Aided Uncertainty Modeling of 
Nonlinear Parameter-Dependent Systems, Part I: Theoretical Overview”.  Proceedings of the Computer Aided 
Control System Design Conference, August 1999. 

[20] Belcastro, Christine M., Lim, Kyong B. and Morelli, Eugene A.: “Computer-Aided Uncertainty Modeling of 
Nonlinear Parameter-Dependent Systems, Part II: F-16 Example”.  Proceedings of the Computer Aided Control 
System Design, August 1999. 

[21] Halmos, Paul R.:  Finite-Dimensional Vector Spaces.  Springer-Verlag New York, Inc., 1974 
[22] Gantmacher, F. R.:  The Theory of Matrices, Vol. I.  Chelsea Publishing Company, New York, NY, 1959. 
[23] Magni, J.-F., “Linear Fractional Representation Toolbox - Modeling, Order Reduction, and Gain Scheduling”, 

ONERA Technical Report TR 6/08162 DSCD, ONERA, Systems Control and Flight Dynamics Department, July 
2004. 

[24] H. G. Kwatny and B.-C. Chang, "Constructing Linear Families from Parameter-Dependent Nonlinear 
Dynamics," IEEE Transactions on Automatic Control, vol. 43, pp. 1143-1147, 1998. 

[25] S. Thomas, H. G. Kwatny, and B. C. Chang, "Bifurcation Analysis of Flight Control Systems," presented at 
16th IFAC World Congress, Prague, 2005. 

[26] E. A. Morelli, Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics. Proceedings 
American Control Conference, Philadelphia, pp. 997-1001, 1998.  

[27] Bennani, S.,  Willemsen, D.M.C., and Scherer, C.W. "Robust Control of Linear Parametrically Varying 
Systems with Bounded Rates", Journal of Guidance, Control, and Dynamics,  Vol 21, No. 6, Nov.-Dec., 1998, 
pp.916- 922. 

[28] Terlouw, J.C, and Lambrechts, P.F., “ A MATLAB Toolbox for Parameter Uncertainty Modelling”, Technical 
Report ,CR-93455-L, National Aerospace Laboratory NLR, Amsterdam, 1993. 

 
American Institute of Aeronautics and Astronautics 

 

29



[29] Varga, V. and Looye, G.,  “Symbolic and numerical software tools for  LFT-based low order Uncertainty 
modeling”,  the IEEE International Symposium on computed Aided control System Design, Kohala Coast, 
Hawaii, U.S.A. Aug. 1999, pp176-181. 

[30] Barmish, B.R.,  Ackermann, A., and Hu, H.Z., “The tree structured decomposition”, Conference on Information 
Sciences and Systems, Baltimore, MD. U.S.A. 1989 

[31] Morelli, E.A.  “System IDentification Programs for AirCraft (SIDPAC),”  AIAA Paper 2002-4704, AIAA 
Atmospheric Flight Mechanics Conference, Monterey, CA, August 2002.  

[32] Morelli, E.A. and DeLoach, R.,  “Wind Tunnel Database Development using Modern Experiment Design and 
Multivariate Orthogonal Functions,” AIAA Paper 2003-0653, 41st AIAA Aerospace Sciences Meeting and 
Exhibit, Reno, NV, January 2003.  

 
American Institute of Aeronautics and Astronautics 

 

30


	Introduction
	Numerical Parametric LFT Modeling Approach
	Numerical Matrix-Based LFT Modeling Method
	Theorem
	Lemma
	Description of Preliminary Software Tool

	LFT Modeling Examples
	Uncertainty Modeling for Extreme Aircraft Flight Conditions
	Formulation of LPV Models Near Bifurcation Points
	F-16 Example
	Missile Model Problem

	LFT Modeling Tool Comparison
	LFT Modeling Tool Developed by ONERA
	LFT Modeling Tool Developed by MuSYN, Inc. (and Included in 

	Example:
	F-16
	(V, )
	Missile
	Generic
	n
	nV
	n
	n
	n
	nM
	n
	nx
	ny
	nz
	NASA (“lft_model”)
	No Reduction
	86
	31
	55
	12
	4
	8
	94
	9
	64
	21
	1-D Reduction (NASA)
	67
	27
	40
	10
	4
	6
	45
	9
	24
	12
	n-D Reduction (ONERA)
	55
	22
	33
	9
	4
	5
	45
	9
	24
	12
	ONERA (“symtreed”)
	No Reduction
	72
	24
	48
	11
	6
	5
	110
	9
	24
	77
	1-D Reduction (ONERA)
	67
	23
	44
	9
	4
	5
	109
	9
	24
	76
	n-D Reduction (ONERA)
	56
	23
	33
	9
	4
	5
	46
	9
	24
	13
	MUSYN (“ureal”)
	No Reduction
	560
	280
	280
	16
	8
	8
	738
	318
	210
	210
	“Basic” Reduction (MUSYN)
	235
	106
	129
	16
	8
	8
	579
	268
	173
	138
	“Full” Reduction (MUSYN)
	53
	22
	31
	14
	8
	6
	45
	9
	24
	12
	n-D Reduction (ONERA)
	53
	22
	31
	14
	8
	6
	45
	9
	24
	12
	n
	nx
	ny
	nz
	n
	nx
	ny
	nz
	n
	nx
	ny
	nz
	Conclusion
	Appendix
	Acknowledgments
	References

