304 research outputs found

    Novel screening test for celiac disease using peptide functionalised gold nanoparticles

    Get PDF
    © The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved. AIM To develop a screening test for celiac disease based on the coating of gold nanoparticles with a peptide sequence derived from gliadin, the protein that triggers celiac disease. METHODS 20 nm gold nanoparticles were first coated with NeutrAvidin. A long chain Polyethylene glycol (PEG) linker containing Maleimide at the Ω-end and Biotin group at the α-end was used to ensure peptide coating to the gold nanoparticles. The maleimide group with the thiol (-SH) side chain reacted with the cysteine amino acid in the peptide sequence and the biotinylated and PEGylated peptide was added to the NeutrAvidin coated gold nanoparticles. The peptide coated gold nanoparticles were then converted into a serological assay. We used the peptide functionalised gold nanoparticle-based assay on thirty patient serum samples in a blinded assessment and compared our results with the previously run serological and pathological tests on these patients. RESULTS A stable colloidal suspension of peptide coated gold nanoparticles was obtained without any aggregation. An absorbance peak shift as well as color change was caused by the aggregation of gold nanoparticles following the addition of anti-gliadin antibody to peptide coated nanoparticles at levels associated with celiac disease. The developed assay has been shown to detect anti-gliadin antibody not only in quantitatively spiked samples but also in a small-scale study on real non-hemolytic celiac disease patient’s samples. CONCLUSION The study demonstrates the potential of gold nanoparticle-peptide based approach to be adapted for developing a screening assay for celiac disease diagnosis. The assay could be a part of an exclusion based diagnostic strategy and prove particularly useful for testing high celiac disease risk populations

    Study of narrowband single photon emitters in polycrystalline diamond films

    Full text link
    © 2014 AIP Publishing LLC. Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible - near infra-red spectral range. The emitters possess fast lifetime (∼ several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing

    Versatile multicolor nanodiamond probes for intracellular imaging and targeted labeling

    Full text link
    © 2018 The Royal Society of Chemistry. We report on the sizable production of fluorescent nanodiamonds (FNDs) containing a near infrared (NIR) color center-namely the silicon vacancy (SiV) defect, and their first demonstration inside cells for bio-imaging. We further demonstrate a concept of multi-color bio-imaging using FNDs to investigate intercellular processes using two types of FNDs. Due to their specific spectral properties, SiV FNDs can be distinguished from common nitrogen-vacancy (NV) FNDs and show a distinct initial spreading throughout the cell interior. The reported results are the first demonstration of multi-color labeling with FNDs that are especially interesting for in vivo bio-imaging due to their stable fluorescence

    Development of Novel Therapeutics Targeting the Blood–Brain Barrier: From Barrier to Carrier

    Full text link
    The blood–brain barrier (BBB) is a highly specialized neurovascular unit, initially described as an intact barrier to prevent toxins, pathogens, and potentially harmful substances from entering the brain. An intact BBB is also critical for the maintenance of normal neuronal function. In cerebral vascular diseases and neurological disorders, the BBB can be disrupted, contributing to disease progression. While restoration of BBB integrity serves as a robust biomarker of better clinical outcomes, the restrictive nature of the intact BBB presents a major hurdle for delivery of therapeutics into the brain. Recent studies show that the BBB is actively engaged in crosstalk between neuronal and the circulatory systems, which defines another important role of the BBB: as an interfacing conduit that mediates communication between two sides of the BBB. This role has been subject to extensive investigation for brain-targeted drug delivery and shows promising results. The dual roles of the BBB make it a unique target for drug development. Here, recent developments and novel strategies to target the BBB for therapeutic purposes are reviewed, from both barrier and carrier perspectives

    Microscopic inspection and tracking of single upconversion nanoparticles in living cells

    Full text link
    © 2018 The Author(s). Nanoparticles have become new tools for cell biology imaging, sub-cellular sensing, super-resolution imaging, and drug delivery. Long-term 3D tracking of nanoparticles and their intracellular motions have advanced the understanding of endocytosis and exocytosis as well as of active transport processes. The sophisticated operation of correlative optical-electron microscopy and scientific-grade cameras is often used to study intercellular processes. Nonetheless, most of these studies are still limited by the insufficient sensitivity for separating a single nanoparticle from a cluster of nanoparticles or their aggregates8. Here we report that our eyes can track a single fluorescent nanoparticle that emits over 4000 photons per 100 milliseconds under a simple microscope setup. By tracking a single nanoparticle with high temporal, spectral and spatial resolution, we show the measurement of the local viscosity of the intracellular environment. Moreover, beyond the colour domain and 3D position, we introduce excitation power density as the fifth dimension for our eyes to simultaneously discriminate multiple sets of single nanoparticles

    Robust, directed assembly of fluorescent nanodiamonds

    Full text link
    © 2016 The Royal Society of Chemistry. Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices

    A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation

    Full text link
    © 2018 The Royal Society of Chemistry. An efficient surface modification for upconversion nanoparticles (UCNPs) is reported via supramolecular host-guest self-assembly. Cucurbit[7]uril (CB) can provide a hydrophilic surface and cavities for most biomolecules. High biological efficiency, activity and versatility of the approach enable UCNPs to be significantly applied in bio-imaging, early disease detection, and bio-sensing

    Exonuclease III-Assisted Upconversion Resonance Energy Transfer in a Wash-Free Suspension DNA Assay

    Full text link
    © 2017 American Chemical Society. Sensitivity is the key in optical detection of low-abundant analytes, such as circulating RNA or DNA. The enzyme Exonuclease III (Exo III) is a useful tool in this regard; its ability to recycle target DNA molecules results in markedly improved detection sensitivity. Lower limits of detection may be further achieved if the detection background of autofluorescence can be removed. Here we report an ultrasensitive and specific method to quantify trace amounts of DNA analytes in a wash-free suspension assay. In the presence of target DNA, the Exo III recycles the target DNA by selectively digesting the dye-tagged sequence-matched probe DNA strand only, so that the amount of free dye removed from the probe DNA is proportional to the number of target DNAs. Remaining intact probe DNAs are then bound onto upconversion nanoparticles (energy donor), which allows for upconversion luminescence resonance energy transfer (LRET) that can be used to quantify the difference between the free dye and tagged dye (energy acceptor). This scheme simply avoids both autofluorescence under infrared excitation and many tedious washing steps, as the free dye molecules are physically located away from the nanoparticle surface, and as such they remain "dark" in suspension. Compared to alternative approaches requiring enzyme-assisted amplification on the nanoparticle surface, introduction of probe DNAs onto nanoparticles only after DNA hybridization and signal amplification steps effectively avoids steric hindrance. Via this approach, we have achieved a detection limit of 15 pM in LRET assays of human immunodeficiency viral DNA

    Localization of Narrowband Single Photon Emitters in Nanodiamonds

    Full text link
    © 2016 American Chemical Society. Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors

    A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening.

    Get PDF
    The COVID-19 pandemic has changed people's lives and has brought society to a sudden standstill, with lockdowns and social distancing as the preferred preventative measures. To lift these measurements and reduce society's burden, developing an easy-to-use, rapid, and portable system to detect SARS-CoV-2 is mandatory. To this end, we developed a portable and semi-automated device for SARS-CoV-2 detection based on reverse transcription loop-mediated isothermal amplification followed by a CRISPR/Cas12a reaction. The device contains a heater element mounted on a printed circuit board, a cooler fan, a proportional integral derivative controller to control the temperature, and designated areas for 0.2 mL Eppendorf® PCR tubes. Our system has a limit of detection of 35 copies of the virus per microliter, which is significant and has the capability of being used in crisis centers, mobile laboratories, remote locations, or airports to diagnose individuals infected with SARS-CoV-2. We believe the current methodology that we have implemented in this article is beneficial for the early screening of infectious diseases, in which fast screening with high accuracy is necessary
    • …
    corecore