1,022 research outputs found

    Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose

    Get PDF
    Background: Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases. Results: In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively. Conclusions: The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts

    Sibling recurrence risk ratio analysis of the metabolic syndrome and its components over time

    Get PDF
    BACKGROUND: The purpose of this study was to estimate both cross-sectional sibling recurrence risk ratio (λ(s)) and lifetime λ(s )for the metabolic syndrome and its individual components over time among sibships in the prospectively followed-up cohorts provided by the Genetic Analysis Workshop 13. Five measures included in the operational criteria of the metabolic syndrome by the Adult Treatment Panel III were examined. A method for estimating sibling recurrence risk with correction for complete ascertainment was used to estimate the numerator, and the prevalence in the whole cohort was used as the denominator of λ(s). RESULTS: Considerable variability in the λ(s )was found in terms of different time-points for the cross-sectional definition, the times of fulfilling the criterion for lifetime definition, and different components. Obesity and hyperglycemia had the highest cross-sectional λ(s )of the five components. Both components also had the largest slopes in the linear trend of the lifetime λ(s). However, the magnitudes of the lifetime λ(s )were similar to that of the mean cross-sectional λ(s), which were <2. The results of nonparametric linkage analysis showed only suggestive evidence of linkage between one marker and lifetime diagnosis of low high-density lipoprotein cholesterol and metabolic syndrome, respectively. CONCLUSION: The λ(s )of the metabolic syndrome and its components varies substantially across time, and the λ(s )of lifetime diagnosis was not necessarily larger than that of a cross-sectional diagnosis. The magnitude of λ(s )does not predict well the maximum LOD score of linkage analysis

    Local Magnetic Field Role in Star Formation

    Get PDF
    We highlight distinct and systematic observational features of magnetic field morphologies in polarized submm dust continuum. We illustrate this with specific examples and show statistical trends from a sample of 50 star-forming regions.Comment: 4 pages, 3 figures; to appear in the EAS Proceedings of the 6th Zermatt ISM Symposium "Conditions and Impact of Star Formation from Lab to Space", September 201
    corecore