6,200 research outputs found
Effects of perturbative exchanges in a QCD-string model
The QCD-string model for baryons derived by Simonov and used for the
calculation of baryon magnetic moments in a previous paper is extended to
include also perturbative gluon and meson exchanges. The mass spectrum of the
baryon multiplet is studied. For the meson interaction either the pseudoscalar
or pseudovector coupling is used. Predictions are compared with the
experimental data. Besides these exchanges the influence of excited quark
orbitals on the baryon ground state are considered by performing a multichannel
calculation. The nucleon-Delta splitting increases due to the mixing of higher
quark states while the baryon magnetic momenta decrease. The multichannel
calculation with perturbative exchanges is shown to yield reasonable magnetic
moments while the mass spectrum is close to experiment.Comment: 37 pages Revtex with 2 figures, to be published in Phys. Atom. Nucl.
dedicated to the 70th Birthday of Yu. A. Simono
Excitonic instability and electric-field-induced phase transition towards a two dimensional exciton condensate
We present an InAs-GaSb-based system in which the electric-field tunability
of its 2D energy gap implies a transition towards a thermodynamically stable
excitonic condensed phase. Detailed calculations show a 3 meV BCS-like gap
appearing in a second-order phase transition with electric field. We find this
transition to be very sharp, solely due to exchange interaction, and so, the
exciton binding energy is greatly renormalized even at small condensate
densities. This density gradually increases with external field, thus enabling
the direct probe of the Bose-Einstein to BCS crossover.Comment: LaTex, 11 pages, 3 ps figures, To appear in PR
Signature of strange dibaryon in kaon-induced reaction
We examine how the signature of the strange-dibaryon resonances in the
barKNN-piSigmaN system shows up in the scattering amplitude on the physical
real energy axis within the framework of Alt-Grassberger-Sandhas (AGS)
equations. The so-called point method is applied to handle the three-body
unitarity cut in the amplitudes. We also discuss the possibility that the
strange-dibaryon production reactions can be used for discriminating between
existing models of the two-body barKN-piSigma system with Lambda(1405).Comment: 4 pages, 6 figures, talk given at The Fifth Asia-Pacific Conference
on Few-Body Problems in Physics 2011 (APFB2011), held in Seoul, Korea, August
22-26, 201
Promising Developments in Bio-Based Products as Alternatives to Conventional Plastics to Enable Circular Economy in Ukraine
Transforming the plastic industry toward producing more sustainable alternatives than conventional plastics, as an essential enabler of the bio-based circular economy (CE), requires reinforcing initiatives to drive solutions from the lab to the market. In this regard, startups and ideation and innovation events can potentially play significant roles in consolidating efforts and investments by academia and industry to foster bio-based and biodegradable plastic-related developments. This study aimed to present the current trends and challenges of bioplastics and bio-based materials as sustainable alternatives for plastics. On this basis, having conducted a systematic literature review, the seminal research themes of the bio-based materials and bioplastics literature were unfolded and discussed. Then, the most recent developments of bio-based sustainable products in Ukraine, as alternatives to petroleum-based plastics, that have gained publicity through local startup programs and hackathons were presented. The findings shed light on the potential of the bio-based sector to facilitate the CE transition through (i) rendering innovative solutions most of which have been less noticed in academia before; (ii) enhancing academic debate and bridging the gap between developers, scholars, and practitioners within the plastic industry toward creating circularity across the supply chain; (iii) identifying the main challenges and future perspectives for further investigations in the future
quasi-bound state and the interaction: coupled-channel Faddeev calculations of the system
Coupled-channel three-body calculations of an ,
quasi-bound state in the system were
performed and the dependence of the resulting three-body energy on the two-body
interaction was investigated. Earlier results of
binding energy MeV and width
MeV are confirmed [N.V. Shevchenko {\it et al.}, Phys. Rev. Lett. {\bf 98},
082301 (2007)]. It is shown that a suitably constructed energy-independent
complex potential gives a considerably shallower and narrower
three-body quasi-bound state than the full coupled-channel calculation.
Comparison with other calculations is made.Comment: 22 pages, 7 figures, 4 tables; minor corrections, accepted for
publication in Phys. Rev.
Drag in paired electron-hole layers
We investigate transresistance effects in electron-hole double layer systems
with an excitonic condensate. Our theory is based on the use of a minimum
dissipation premise to fix the current carried by the condensate. We find that
the drag resistance jumps discontinuously at the condensation temperature and
diverges as the temperature approaches zero.Comment: 12 pages, 1 Figure, .eps file attache
The Mre11-Rad50-Nbs1 complex mediates activation of TopBP1 by ATM
The activation of ATR-ATRIP in response to double-stranded DNA breaks (DSBs) depends upon ATM in human cells and Xenopus egg extracts. One important aspect of this dependency involves regulation of TopBP1 by ATM. In Xenopus egg extracts, ATM associates with TopBP1 and thereupon phosphorylates it on S1131. This phosphorylation enhances the capacity of TopBP1 to activate the ATR-ATRIP complex. We show that TopBP1 also interacts with the Mre11-Rad50-Nbs1 (MRN) complex in egg extracts in a checkpoint-regulated manner. This interaction involves the Nbs1 subunit of the complex. ATM can no longer interact with TopBP1 in Nbs1-depleted egg extracts, which suggests that the MRN complex helps to bridge ATM and TopBP1 together. The association between TopBP1 and Nbs1 involves the first pair of BRCT repeats in TopBP1. In addition, the two tandem BRCT repeats of Nbs1 are required for this binding. Functional studies with mutated forms of TopBP1 and Nbs1 suggested that the BRCT-dependent association of these proteins is critical for a normal checkpoint response to DSBs. These findings suggest that the MRN complex is a crucial mediator in the process whereby ATM promotes the TopBP1-dependent activation of ATR-ATRIP in response to DSBs
Evolution of emission line activity in intermediate mass young stars
We present optical spectra of 45 intermediate mass Herbig Ae/Be stars.
Together with the multi-epoch spectroscopic and photometric data compiled for a
large sample of these stars and ages estimated for individual stars by using
pre-main sequence evolutionary tracks, we have studied the evolution of
emission line activity in them. We find that, on average, the H_alpha emission
line strength decreases with increasing stellar age in HAeBe stars, indicating
that the accretion activity gradually declines during the PMS phase. This would
hint at a relatively long-lived (a few Myr) process being responsible for the
cessation of accretion in Herbig Ae/Be stars. We also find that the accretion
activity in these stars drops substantially by ~ 3 Myr. This is comparable to
the timescale in which most intermediate mass stars are thought to lose their
inner disks, suggesting that inner disks in intermediate mass stars are
dissipated rapidly after the accretion activity has fallen below a certain
level. We, further find a relatively tight correlation between strength of the
emission line and near-infrared excess due to inner disks in HAeBe stars,
indicating that the disks around Herbig Ae/Be stars cannot be entirely passive.
We suggest that this correlation can be understood within the frame work of the
puffed-up inner rim disk models if the radiation from the accretion shock is
also responsible for the disk heating.Comment: 39 pages, accepted for publication in Ap
Interaction between superconducting vortices and Bloch wall in ferrite garnet film
Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a
superconductor is analyzed in the London approximation. Equilibrium
distribution of vortices formed around the Bloch wall is calculated. The
results agree quantitatively with magneto-optical experiment where an in-plane
magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows
observation of individual vortices. In particular, our model can reproduce a
counter-intuitive attraction observed between vortices and a Bloch wall having
the opposite polarity. It is explained by magnetic charges appearing due to
discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure
- …