5,380 research outputs found

    NLO QCD corrections to Single Top and W associated production at the LHC with forward detector acceptances

    Full text link
    In this paper we study the Single Top and W boson associated photoproduction via the main reaction pppγppW±t+Y\rm pp\rightarrow p\gamma p\rightarrow pW^{\pm}t+Y at the 14 TeV Large Hadron Collider (LHC) up to next-to-leading order (NLO) QCD level assuming a typical LHC multipurpose forward detector. We use the Five-Flavor-Number Schemes (5FNS) with massless bottom quark assumption in the whole calculation. Our results show that the QCD NLO corrections can reduce the scale uncertainty. The typical K-factors are in the range of 1.15 to 1.2 which lead to the QCD NLO corrections of 15% to 20% correspond to the leading-order (LO) predictions with our chosen parameters.Comment: 41pages, 12figures. arXiv admin note: text overlap with arXiv:1106.2890 by other author

    Note on a non-critical holographic model with a magnetic field

    Full text link
    We consider a noncritical holographic model constructed from an intersecting brane configuration D4/D4ˉ\bar{\rm{D4}}-D4 with an external magnetic field. We investigate the influences of this magnetic field on strongly coupled dynamics by the gauge/gravity correspondence.Comment: 18 pages, references added and typos revise

    CFD Analysis of Oil Distribution in Oil-injected Screw Compressor

    Get PDF
    Oil-injected screw compressor has been used in various industries. After decades of continuous research efforts by research teams around the world, the computer tools for rotor profile design, thermodynamic analysis, CFD/CAE calculation, and moving grid generation have been well developed and widely employed in design works. With assistance from the computer tools in performance simulation, designers could clearly understand internal phenomena of a screw compressor, as a reference for performance optimization design, and systematically carry out research works. One important issue inside an oil-injected screw compressor is about oil distribution. Different oil-injected positions and quantities cause different oil distribution inside the compressor. Therefore, the effects of oil sealing and lubrication change. Designers must understand how oil distribution is to deal with oil issues. In this study, CFD analysis was done with dynamic grid technology. Basic performance of screw compressor was calculated and compared with experiment data. Besides, three CFD models with different oil-injected paths were designed and analyzed. The influence of varying oil-injected conditions on oil distribution near contact line, sealing lines, blow holes, and end sides of inlet and outlet are shown in this study. They are used to explain how volumetric efficiency is affected. Especially for oil distribution near contact line, it not only affects volumetric efficiency, but also acts on the lubrication as rotor meshing

    Application of Computational Fluid Dynamics to the Lubrication Study of an Oil-injected Screw Compressor

    Get PDF
    Computational fluid dynamics and mesh generation tools have been well developed, and could be used to calculate the performance of an oil-injected screw compressor. Designers could now effectively obtain reliable results of efficiency, temperature, force and torque. Some physical phenomena inside a screw compressor are not easy to be observed through experiments, such as the oil distribution and the oil film thickness on the rotor surface. Under the ideal lubrication condition, the oil film of proper thickness should be maintained on the local surfaces which are going to contact with each other. This could be numerically explored by computational fluid dynamics. The first case in this study showed the effect of centrifugal force on a thin free surface flow on the rotor surface. Designers could graphically understand how the oil film flows on the rotor surface when rotors separately rotate without meshing with each other and doing the compression work. The second case in this study was the rotor lubrication. The clearance distribution between rotors in the actual contact area was designed by the minimum film thickness and was 1 μm. The pressure gradient on the rotor surface was used to see if the hydrodynamic pressure appeared. Designers could optimize the design of oil injection not only by considering efficiencies, but also by analyzing the pressure gradient and the oil film distribution on rotor surfaces

    Millimeter-wave backhaul for 5G networks: challenges and solutions

    No full text
    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design
    corecore