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ABSTRACT 
 

Oil-injected screw compressor has been used in various industries. After decades of continuous research efforts by 

research teams around the world, the computer tools for rotor profile design, thermodynamic analysis, CFD/CAE 

calculation, and moving grid generation have been well developed and widely employed in design works. With 

assistance from the computer tools in performance simulation, designers could clearly understand internal 

phenomena of a screw compressor, as a reference for performance optimization design, and systematically carry out 

research works. One important issue inside an oil-injected screw compressor is about oil distribution. Different oil-

injected positions and quantities cause different oil distribution inside the compressor. Therefore, the effects of oil 

sealing and lubrication change. Designers must understand how oil distribution is to deal with oil issues. In this 

study, CFD analysis was done with dynamic grid technology. Basic performance of screw compressor was 

calculated and compared with experiment data. Besides, three CFD models with different oil-injected paths were 

designed and analyzed. The influence of varying oil-injected conditions on oil distribution near contact line, sealing 

lines, blow holes, and end sides of inlet and outlet are shown in this study. They are used to explain how volumetric 

efficiency is affected. Especially for oil distribution near contact line, it not only affects volumetric efficiency, but 

also acts on the lubrication as rotor meshing. 

 

1. INTRODUCTION 
 

The operation of oil-injected screw compressor is based on deformable compression chambers constructed by the 

lobes or rotors and the case. The gas goes into compression chambers through the inlet port of case, and is 

compressed by the meshing rotors. During the compression process, oil is injected on a specific location. Oil 

lubricates the rotating rotors and decreases the temperature of the compressed gas to a safe working range. Finally, 

the compressed gas goes out of compression chambers through the outlet port of case. The flow path is shown in 

Figure 1. Study on oil-injected screw compressor usually considered the effects of oil-injection, and is carried out by 

thermodynamic analysis or CAE/CFD analysis. The goal is to get the performance of compressor, such as 

volumetric and isentropic efficiencies, and the forces or torque on rotors. 

 

Based on thermodynamic analysis, Stosic et al., (1992) performed a parametric study to investigate the oil-injection 

parameters on performance of compressor. Fujiwara et al., (1995) obtained the correlations of the heat transfer 

coefficients between the compressed gas and oil inside an oil-injected screw compressor. Fleming et al., (1995; 

1998a; 1998b) studied the leakage paths inside the screw compressor and noted that the clearances of the leakage 

paths affect the performance of the screw compressor. Wu et al., (2004; 2007) considered the relative motion 

between the compressed air and oil and calculated the mass flow rates at the leakage paths and at the outlet. 

Seshaiah et al., (2007; 2010) calculated the mass flow rates of the compressed gas and the oil through the clearances 

of the leakage paths. They studied not only the effects of the clearance of the leakage paths on the performance of 

the compressor, but also the effects of the mass ratio of the compressed gas to oil on the temperature-time histories 

of the compressed air and oil. Based on CAE/CFD analysis, Kovacevic et al., (2005; 2006; 2007; 2011) and Rane 

and Kovacevic (2017) developed and refined a procedure to generate dynamic meshes. The deformable meshes were 

shown to improve the accuracy of the calculations for the multiphase flow field. In addition to the flow field, the 

temperature distribution in the rotors, the deformations of rotors and the stresses in the solid parts of the screw 

compressor were also calculated.  

 



 

 1233, Page 2 
 

24
th

 
 
International Compressor Engineering Conference at Purdue, July 9-12, 2018 

Based on mesh generation tool of TwinMesh and the simulation tool of ANSYS, performance of screw compressor 

is calculated in this study. Three CFD models with different oil-injected locations were designed and analyzed. The 

influence of different oil-injected conditions on oil distribution near contact line, sealing lines, blow holes, and outlet 

ends of rotors are shown in this study. 

 

 
Figure 1: The schematic of an oil-injected screw compressor 

 

2. THEORETICAL MODEL 
 

An oil-injected screw compressor named RE-260 is analyzed in this study. Figure 2 (a) shows the main structures of 

compressor, including a pair of rotors, case, and outlet parts. A pair of “5x6” rotors and case construct the 

compression chambers. The gas goes through the inlet part of case and enters the compression chambers. After the 

gas pressure is increased enough, the compressed gas starts to flow to the next stage through the outlet part. In order 

to reduce the calculation time, the reduced 3D model is adapted and shown in Figure 2 (b). The 3D model is 

analyzed by ANSYS CFX. The conservation equations of continuity, momentum, and energy are solved. The 

turbulent flow and non-slip wall conditions are considered. The Multiphase module of ANSYS CFX is used to 

analyze the effect of oil-injection. The Volume of Fraction (VOF) is calculated and is used to explain the oil 

distribution.  

 

(a) (b) 

  
Figure 2: (a) Full and (b) reduced 3-D model of oil-injected screw compressor 

 

The flow path is cut into dynamic and static mesh regions, as shown in Figure 3. Figure 3 (a) shows the dynamic 

mesh region, where is the compression chamber. The dynamic mesh is generated by TwinMesh. At first, 2D face 

Inlet 

Outlet 

Oil/Gas 

Separation 
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mesh of ends of rotors is obtained. Then, the whole 3D dynamic meshes are generated by the concept of sweep. 

With the dynamic mesh, the fluid phenomena inside compression chambers can be calculated by ANSYS CFX 

efficiently. Figure 3 (b) shows the static mesh regions, including the case and outlet part. The element number of the 

theoretical model is about 300,000 in static mesh region, and 2,000,000 in dynamic mesh region. 

 

(a) (b) 

 
 

Figure 3: (a) Dynamic mesh and (b) static mesh of flow paths 

 

In this study, theoretical models with three different oil-injected locations are designed. Figure 4 (a) shows the oil-

injected location (a). The compression chamber just achieves the maximum volume. The oil is injected into the 

chamber on the male rotor side. At this moment, the rotation angle of male rotor is at (n) Degree. Figure 4 (b) shows 

the oil-injected location (b). The oil is injected into the chamber on the male rotor side. The rotation angle of male 

rotor is at (n + 72) Degree. Figure 4 (c) shows the oil-injected location (c). The oil is injected into the chamber on 

both male and female rotor sides. The rotation angle of male rotor is at (n + 144) Degree. Besides the different oil-

injected locations, the different oil-injected flow-rates of 5, 15, and 25L/min are also considered on oil-injected 

location (b). Above mentioned oil-injected conditions are listed in Table 1. The calculation conditions of all models 

are 3,600rpm for rotational speed, 3.6bar for inlet pressure, and 9.8bar for outlet pressure. 

 

Table 1: Oil injection conditions of theoretical models 

 

Location shown in 

Figure. 4 

Oil-injected flow-rate 

5 L/min 15 L/min 25 L/min 

(a) -- ○ -- 

(b) ○ ○ ○ 

(c) -- ○ -- 

 

(a) (b) (c) 

   
Figure 4: (a) Oil is injected on male rotor side. Male rotor is at (n

o
) rotation angle. (b) Oil is injected on male rotor 

side. Male rotor is at (n
o
 + 72

o
) rotation angle. (c) Oil is injected on both male and female rotor sides. Male rotor is 

at (n
o
 + 144

o
) rotation angle. 
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3. RESULT AND DISCUSSION 
 

The theoretical models listed in Table 1 are all calculated. The volumetric efficiencies are list in Table 2. As oil is 

injected on the location (b), the volumetric efficiencies are 90.5%, 91.2%, and 92.7% corresponding to oil-injected 

flow-rates of 5, 15, and 25L/min. Under the condition of oil-injected flow-rate of 15L/min, the volumetric 

efficiencies are 90.8%, 91.2% and 87.5% corresponding to the oil-injected location (a), (b) and (c). Volumetric 

efficiencies are affected by oil-injected location and flow-rate. Between the oil-injected flow-rates of 5 and 25L/min 

on location (b), the difference of volumetric efficiency is about 2.43%. 

 

The values of total average gas torque are also list in Table 2. As oil is injected on the location (b), the values of 

total average gas torque are 103.7, 104.5, and 105.2N-m corresponding to oil-injected flow-rates of 5, 15, and 

25L/min. Under the condition of oil-injected flow-rate of 15L/min, the values of total average gas torque are 105.1, 

104.5, and 104.7N-m corresponding to the oil-injected location (a), (b) and (c). The values of total average gas 

torque are affected by oil-injected location and flow-rate. Between the oil-injected flow-rates of 5 and 25L/min on 

location (b), the difference of total average gas torque is about 1.43%. 

 

Figure 5 shows the pressure curves of theoretical models with oil-injected flow-rates of 5 and 25L/min on location 

(b). The pressure curves are cut into inlet stage (A), compression stage (B), and outlet stage (C). The trends of the 

pressure curves in the inlet stage are quite the same. In the compression stage, the separation between two pressure 

curves appears after oil is injected. In the outlet stage, the separation between both pressure curves is clear. The 

pressure pulse appears for the structure effect. The amplitude of the pressure pulse would be influenced by oil, and is 

larger as more oil being injected. 

 

Table 2: Volumetric efficiencies and total average gas torque 

 

Performance 
Location shown 

in Figure. 4 

Oil-injected flow-rate 

5 L/min 15 L/min 25 L/min 

Volumetric 

Efficiency [%] 

(a) -- 90.8 -- 

(b) 90.5 91.2 92.7 

(c) -- 87.5 -- 

Total average gas 

torque [N-m] 

(a) -- 105.1 -- 

(b) 103.7 104.5 105.2 
(c) -- 104.7 -- 

 

 
Figure 5: Pressure curves under oil-injected flow-rates of 5 and 25L/min 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

  
Figure 6: (a), (b), and (c) show volume of fraction of oil with different oil-injected flow-rates on location b. (d), 

(e), and (f) show volume of fraction of oil with oil-injected flow-rate of 15L/min on different locations. 

 

The volume of fractions (VOFs) of oil on sealing line, contact line, and blow hole are shown in Figure 6. Figure 6 (a) 

and (d) show VOF curves of oil on sealing line. The x-axis denotes the rotation angle of male rotor. The y-axis 

denotes the average VOF of oil on sealing line corresponding to the rotation angle. When the lobe of rotor crosses 

the oil-injected location, the VOF of oil significantly increases. When the lobe moves forward, the injected oil 

spreads in the compression chamber, and the VOF of oil on sealing line decreases. In the outlet process, the oil starts 

to accumulate on sealing line. The increased VOF of oil is observable. Figure 6 (a) shows the VOF curves of oil on 
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sealing line with different oil-injected flow-rates on location (b). When the oil-injected flow-rate is larger, the VOF 

of oil on sealing is higher. Figure 6 (b) shows the VOF curves of oil on sealing line with oil-injected flow-rate of 

15L/min on different locations. The position of maximum value on sealing line changes with the oil-injected 

location. 

 

Figure 6 (b), (c), (e) and (f) show the VOF curves of oil on contact line and blow hole versus axial position from 

inlet end toward outlet end of rotor. In the range between inlet end and middle of rotor, this part of rotor experiences 

the inlet process and beginning of compression process. The oil just begins to be injected into compression chamber. 

The pressure differences between the chambers separated by contact line and blow hole are small. Therefore, less oil 

mixed with gas flows through contact line and blow hole. The VOFs of oil in this range are small. In the range 

between middle and outlet end of rotor, this part of rotor experiences the compression and outlet processes. The oil 

has already injected into compression chamber. The pressure differences between the chambers separated by contact 

line and blow hole are increased. More oil mixed with gas flows through contact line and blow hole. The VOF 

curves of oil begin to increase from the middle of rotor. The largest VOFs on contact line and blow hole appear 

when the part of rotor experiences outlet process. Figure 6 (b) and (c) show the VOF curves of oil on contact line 

and blow hole with different oil-injected flow-rates on location (b). In the range with significant values, the 

maximum value increases and the range becomes wider under larger oil-injected flow rate. Figure 6 (e) and (f) show 

the VOF curves of oil on contact line and blow hole with oil-injected flow-rate of 15L/min on different locations. In 

the range with significant values, the maximum value and the range are different between different oil-injected 

locations. The largest maximum value and widest range appear when oil is injected on location (c). 

 

For the oil distribution on outlet ends of rotors, figure 7 (a) shows that most oil, which is injected from the side of 

male rotor, is located in the lobes which experience the last half of compression and outlet processes. The VOF is 

small in the lobes which experience inlet and the beginning of compression processes. These show that when oil is 

injected into the compression chamber, oil is not only thrown in radial direction, but also pushed toward the outlet 

end of rotor. Finally, the oil would be released through outlet port, as shown in Figure 7 (b). 

 

(a) (b) 

  
Figure 7: Volume of fraction of oil on the ends of rotors 

 

The pressure information inside compression chamber is applied to calculate the forces acting on rotors. The radial 

and axial forces are listed in Table 3. In the model with oil-injected flow-rate of 5L/min on location (b), the radial 

force is 5.53±0.33kN and axial force is -2.24±0.21kN on male rotor. The radial force is 6.17±0.44kN and axial force 

is -0.51±0.05kN on female rotor. The radial force on female rotor is about 0.64kN larger than the one on male rotor. 

The axial force on male rotor is about 1.73kN larger than the one on female rotor. In the model with oil-injected 

flow-rate of 25L/min on location (b), the radial force is 5.60±0.34kN and axial force is -2.27±0.23kN on male rotor. 

The radial force is 6.26±0.51kN and axial force is -0.51±0.06kN on female rotor. The radial force on female rotor is 

about 0.66kN larger than the one on male rotor. The axial force on male rotor is about 1.76kN larger than the one on 

female rotor. 

 

The pressure information could also be applied to calculate the gas torque acting on rotors. The average gas torque is 

listed in Table 3. The gas torque curves are shown in Figure 8. In the model with oil-injected flow-rate of 5L/min on 
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location (b), the total average gas torque is 103.71±9.54N-m. In the model with oil-injected flow-rate of 25L/min on 

location (b), the total average gas torque is 105.19±10.47N-m. The difference is about 1.43% between these two oil-

injected flow-rates. Figure 8 (a) and (b) show that the trends of torque curves between these two oil-injected flow-

rates are quite the same. The torque on male rotor is always larger than 0N-m. The one on female rotor is always 

smaller than 0N-m. These show that male and female rotors could rotate stably. 

 

Table 3: Force and gas torque acting on rotors 

 

 Oil Injection 5 Liter/min 25 Liter/min 

Force 

[kN] 

Male Rotor  
radial direction 5.53±0.33 5.60±0.34 

axial direction -2.24±0.21 -2.27±0.23 

Female Rotor 
radial direction 6.17±0.44 6.26±0.51 

axial direction -0.51±0.05 -0.51±0.06 

Torque 

[N-m] 

Male Rotor  84.58±7.76 86.03±8.61 

Female Rotor  -22.96±2.22 -22.99±2.60 

Total  103.71±9.54 105.19±10.47 

 

 (a) (b) 

  
Figure 8: Gas torque curves under oil-injected flow-rates of (a) 5L/min and (b) 25L/min 

 

4. CONCLUSIONS 
 

The pressure curves, force on rotor, gas torque on rotor, and oil distribution inside oil-injected screw compressor are 

discovered. With the help of dynamic mesh and CFD tools, the models with different oil-injected flow-rates and 

locations are calculated. The performance of oil-injected screw compressor would be affected by different oil-

injected flow-rates and locations. When oil-injected flow-rate changes from 5 to 25L/min, volumetric efficiency is 

about 2.43% increased and total gas torque is about 1.43% increased. Under oil-injected flow-rates of 5 and 25L/min 

on location (b), the trends of the pressure curves are quite the same in the inlet stage. In the compression stage, the 

separation between two pressure curves appears after oil is injected. In the outlet stage, the separation between both 

pressure curves is clear. The pressure pulse appears for the effect of structure. The amplitude of the pressure pulse 

would be influenced by oil, and is larger as more oil being injected. 

 

When lobe of rotor crosses the oil-injected location, the value of VOF of oil on sealing line significantly increases. 

When the lobe moves forward, the injected oil spreads in the compression chamber, and the value of VOF of oil on 

sealing line decreases. In the outlet process, the oil starts to accumulate on sealing line. The increased value of VOF 

is observable. When the oil-injected flow-rate is larger, the value of VOF of oil on sealing is higher. The position of 

maximum value of VOF of oil on sealing line changes with the oil-injected location. In the range with significant 

values of VOF of oil on contact line and blow hole, the maximum value increases and the range becomes wider 

under larger oil-injected flow rate. The maximum value and the range are different between different oil-injected 

locations. The largest maximum value and widest range appear when oil is injected on designed location (c). 
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For the oil distribution on outlet ends of rotors, most oil is located in the lobes which experience the last half of 

compression and outlet processes. The VOF is small in the lobes which experience inlet and beginning of 

compression processes. When oil is injected into the compression chamber, oil is not only thrown in radial direction, 

but also pushed toward the outlet end of rotor. Finally, the oil would be released through outlet port. 
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