1,639 research outputs found

    CFM@MediaEval 2017 Retrieving diverse social images task via re-ranking and hierarchical clustering

    Full text link
    Β© 2017 Author/owner(s). This paper presents an approach based on re-ranking and hierarchical clustering (HC) for MediaEval 2017 Retrieving Diverse Social Images Task. The experimental results on the development and test set demonstrate that the proposed approach can significantly improve relevance and visual diversity of the query results. Our approach achieves a good tradeoff between relevance and diversity and a result in F1@20 of 0.6533 for the employed test data

    BMC@MediaEval 2017 multimedia satellite task via regression random forest

    Full text link
    Β© 2017 Author/owner(s). In the MediaEval 2017 Multimedia Satellite Task, we propose an approach based on regression random forest which can extract valuable information from a few images and their corresponding metadata. The experimental results show that when processing social media images, the proposed method can be high-performance in circumstances where the images features are low-level and the training samples are relatively small of number.Additionally,when the low-level color features of satellite images are too ambiguous to analyze, random forest is also a efiective way to detect flooding area

    Decadal link between longitudinal morphological changes in branching channels of Yangtze Estuary and movement of the offshore depo-center

    Get PDF
    In estuaries, the morphology of inland and offshore areas usually evolves synergistically. This study examines the decadal link between longitudinal changes in morphology of branching channels and movement of the offshore depo-center (where sediment deposition rate is maximum) of the Yangtze River estuary, under intense human interference. Integrated data analysis is provided on morphology, runoff discharge, and ebb partition ratio from 1950 to 2017. Channel-volume reductions and change rates between isobaths in branching channels reflect the impact of estuarine engineering projects. Ebb partition ratio and duration of discharge β‰₯ 60 000 m3Β s-1 act as proxies for the water excavating force in branching channels and runoff intensity. It is found that deposition occurs in the lower/upper sub-reaches (or further downstream/upstream channels) of the inland north/south branching channels, and the offshore depo-center moves southward or southeastward, as runoff intensity grows; the reverse occurs as runoff intensity declines. This is because the horizontal circumfluence in the Yangtze estuary rotates clockwise as ebb partition ratios of the north/south branching channels increase/decrease for increasing runoff, and conversely rotates anticlockwise for decreasing runoff. Land reclamation activities, the Deepwater Channel Project, and the Qingcaosha Reservoir have impacted greatly on longitudinal changes of morphology in the North Branch and the South Passage and on ebb partition ratio variations in the North/South Channel and the North/South Passage. Dam-induced runoff flattening has enhanced deposition in the upper/lower sub-reaches of the north/south branching channels and caused northward movement of the offshore depo-center, except in areas affected by estuarine engineering projects. Dam-induced longitudinal evolution of branching channel morphology and offshore depo-center movement will likely persist in the future, given the ongoing construction of large cascade dams in the upper Yangtze and the completion of major projects in the Yangtze estuary

    Protein kinase A-dependent Neuronal Nitric Oxide Synthase Activation Mediates the Enhancement of Baroreflex Response by Adrenomedullin in the Nucleus Tractus Solitarii of Rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adrenomedullin (ADM) exerts its biological functions through the receptor-mediated enzymatic mechanisms that involve protein kinase A (PKA), or neuronal nitric oxide synthase (nNOS). We previously demonstrated that the receptor-mediated cAMP/PKA pathway involves in ADM-enhanced baroreceptor reflex (BRR) response. It remains unclear whether ADM may enhance BRR response via activation of nNOS-dependent mechanism in the nucleus tractus solitarii (NTS).</p> <p>Methods</p> <p>Intravenous injection of phenylephrine was administered to evoke the BRR before and at 10, 30, and 60 min after microinjection of the test agents into NTS of Sprague-Dawley rats. Western blotting analysis was used to measure the level and phosphorylation of proteins that involved in BRR-enhancing effects of ADM (0.2 pmol) in NTS. The colocalization of PKA and nNOS was examined by immunohistochemical staining and observed with a laser confocal microscope.</p> <p>Results</p> <p>We found that ADM-induced enhancement of BRR response was blunted by microinjection of NPLA or Rp-8-Br-cGMP, a selective inhibitor of nNOS or protein kinase G (PKG) respectively, into NTS. Western blot analysis further revealed that ADM induced an increase in the protein level of PKG-I which could be attenuated by co-microinjection with the ADM receptor antagonist ADM<sub>22-52 </sub>or NPLA. Moreover, we observed an increase in phosphorylation at Ser1416 of nNOS at 10, 30, and 60 min after intra-NTS administration of ADM. As such, nNOS/PKG signaling may also account for the enhancing effect of ADM on BRR response. Interestingly, biochemical evidence further showed that ADM-induced increase of nNOS phosphorylation was prevented by co-microinjection with Rp-8-Br-cAMP, a PKA inhibitor. The possibility of PKA-dependent nNOS activation was substantiated by immunohistochemical demonstration of co-localization of PKA and nNOS in putative NTS neurons.</p> <p>Conclusions</p> <p>The novel finding of this study is that the signal transduction cascade that underlies the enhancement of BRR response by ADM in NTS is composed sequentially of cAMP/PKA and nNOS/PKG pathways.</p

    One-Dimensional Nanostructures and Devices of II–V Group Semiconductors

    Get PDF
    The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate
    • …
    corecore