1,488 research outputs found
Non-adiabatic dynamics of molecules in optical cavities
Strong coupling of molecules to the vacuum field of micro cavities can modify
the potential energy surfaces opening new photophysical and photochemical
reaction pathways. While the influence of laser fields is usually described in
terms of classical field, coupling to the vacuum state of a cavity has to be
described in terms of dressed photon-matter states (polaritons) which require
quantized fields. We present a derivation of the non-adiabatic couplings for
single molecules in the strong coupling regime suitable for the calculation of
the dressed state dynamics. The formalism allows to use quantities readily
accessible from quantum chemistry codes like the adiabatic potential energy
surfaces and dipole moments to carry out wave packet simulations in the dressed
basis. The implications for photochemistry are demonstrated for a set of model
systems representing typical situations found in molecules
Revisiting two-step Forbush decreases
Interplanetary coronal mass ejections (ICMEs) and their shocks can sweep out galactic cosmic rays (GCRs), thus creating Forbush decreases (FDs). The traditional model of FDs predicts that an ICME and its shock decrease the GCR intensity in a two-step profile. This model, however, has been the focus of little testing. Thus, our goal is to discover whether a passing ICME and its shock inevitably lead to a two-step FD, as predicted by the model. We use cosmic ray data from 14 neutron monitors and, when possible, high time resolution GCR data from the spacecraft International Gamma Ray Astrophysical Laboratory (INTEGRAL). We analyze 233 ICMEs that should have created two-step FDs. Of these, only 80 created FDs, and only 13 created two-step FDs. FDs are thus less common than predicted by the model. The majority of events indicates that profiles of FDs are more complicated, particularly within the ICME sheath, than predicted by the model. We conclude that the traditional model of FDs as having one or two steps should be discarded. We also conclude that generally ignored small-scale interplanetary magnetic field structure can contribute to the observed variety of FD profiles
Multidimensional spectroscopy with a single broadband phase-shaped laser pulse
We calculate the frequency-dispersed nonlinear transmission signal of a
phase-shaped visible pulse to fourth order in the field. Two phase profiles, a
phase-step and phase-pulse, are considered. Two dimensional signals obtained by
varying the detected frequency and phase parameters are presented for a three
electronic band model system. We demonstrate how two-photon and stimulated
Raman resonances can be manipulated by the phase profile and sign, and selected
quantum pathways can be suppressed.Comment: 26 pages, 15 figure
ERK1c regulates Golgi fragmentation during mitosis
Extracellular signal-regulated kinase 1c (ERK1c) is an alternatively spliced form of ERK1 that is regulated differently than other ERK isoforms. We studied the Golgi functions of ERK1c and found that it plays a role in MEK-induced mitotic Golgi fragmentation. Thus, in late G2 and mitosis of synchronized cells, the expression and activity of ERK1c was increased and it colocalized mainly with Golgi markers. Small interfering RNA of ERK1c significantly attenuated, whereas ERK1c overexpression facilitated, mitotic Golgi fragmentation. These effects were also reflected in mitotic progression, indicating that ERK1c is involved in cell cycle regulation via modulation of Golgi fragmentation. Although ERK1 was activated in mitosis as well, it could not replace ERK1c in regulating Golgi fragmentation. Therefore, MEKs regulate mitosis via all three ERK isoforms, where ERK1c acts specifically in the Golgi, whereas ERK1 and 2 regulate other mitosis-related processes. Thus, ERK1c extends the specificity of the Ras-MEK cascade by activating ERK1/2-independent processes
Cascading and Local-Field Effects in Non-Linear Optics Revisited; A Quantum-Field Picture Based on Exchange of Photons
The semi-classical theory of radiation-matter coupling misses local-field
effects that may alter the pulse time-ordering and cascading that leads to the
generation of new signals. These are then introduced macroscopically by solving
Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We
show that both effects emerge naturally by including coupling to quantum modes
of the radiation field in the vacuum state to second order. This approach is
systematic and suggests a more general class of corrections that only arise in
a QED framework. In the semi-classical theory, which only includes classical
field modes, the susceptibility of a collection of non-interacting
molecules is additive and scales as . Second-order coupling to a vacuum mode
generates an effective retarded interaction that leads to cascading and local
field effects both of which scale as
Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy
Closed expressions are derived for resonant multidimensional X-ray
spectroscopy using the quasiparticle nonlinear exciton representation of
optical response. This formalism is applied to predict coherent four wave
mixing signals which probe single and two core-hole states. Nonlinear X-ray
signals are compactly expressed in terms of one- and two- particle Green's
functions which can be obtained from the solution of Hedin-like equations at
the level.Comment: 10 pages and 3 figures (To appear in Physical Review B
Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections
[1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd
- …