1,735 research outputs found

    Nanosecond laser texturing of aluminium for control of wettability

    Get PDF
    There is increasing interest in the use of lasers to modify the wettability of surfaces. Here we report on the use of a 20W nS pulsed IR fibre laser to create strong ydrophobicity on the surface of aluminium sheets. This is unexpected, hydrophobicity is usually associated solely with femto- or pico- second laser processing. At a 20W average power level the area coverage rate is too small for many industrial applications. Further trials using a 800W DPSS laser are described and the ability of this system to change surface wettability at a much higher production rate are indicated. There is little reported literature on surface texturing at higher average power levels. Indications of the productivity, or surface coverage rate, are given. Keywords: Fibre lasers, DPSS lasers, Surface Engineering, texturing, wettability, aluminiu

    Laser Induced Micro Plasma Processing of Polymer Substrates for Biomedical Implant Applications

    Get PDF
    This paper reports the experimental results of a new hybrid laser processing technique; Laser Induced Micro Plasma Processing (LIMP2). A transparent substrate is placed on top of a medium that will interact with the laser beam and create a plasma. The plasma and laser beam act in unison to ablate material and create micro-structuring on the “backside” of the substrate. We report the results of a series of experiments on a new laser processing technique that will use the same laser-plasma interaction to micromachining structures into glass and polymer substrates on the “topside” of the substrate and hence machine non-transparent material. This new laser processing technique is called Laser Induced Micro Plasma Processing (LIMP2). Micromachining of biomedical implants is proving an important enabling technology in controlling cell growth on a macro-scale. This paper discusses LIMP2 structuring of transparent substrate such as glasses and polymers for this application. Direct machining of these materials by lasers in the near infrared is at present impossible. Laser Induced Micro Plasma Processing (LIMP2) is a technique that allows laser operating at 1064 nm to machine microstructures directly these transparent substrates. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    The integration of optical interconnections on ceramic substrates

    Get PDF
    High heat conductivity and high heat capacity make ceramic substrates indispensable to the manufacture of Multi-Chip Modules (MCM) and power electronics. In this paper a detailed description of the integration process of optical lines on to ceramic substrates is presented. The manufacturing of microgrooves in ceramic substrates and the process of integration of optical fibres and active elements is described. Coupling active elements to optical fibre is also presented. Through such an integrated optical line a 4 Gbps signal was transmitted. © 2016 Elsevier B.V. All rights reserved

    Diffusion tensor imaging reveals changes in microstructural integrity along compressed nerve roots that correlate with chronic pain symptoms and motor deficiencies in elderly stenosis patients

    Get PDF
    Age-related degenerative changes in the lumbar spine frequently result in nerve root compression causing severe pain and disability. Given the increasing incidence of lumbar spinal disorders in the aging population and the discrepancies between the use of current diagnostic imaging tools and clinical symptoms, novel methods of nerve root assessment are needed. We investigated elderly patients with stenosis at L4-L5 or L5-S1 levels. Diffusion tensor imaging (DTI) was used to quantify microstructure in compressed L5 nerve roots and investigate relationships to clinical symptoms and motor neurophysiology. DTI metrics (i.e. FA, MD, AD and RD) were measured at proximal, mid and distal segments along compressed (i.e. L5) and intact (i.e. L4 or S1) nerve roots. FA was significantly reduced in compressed nerve roots and MD, AD and RD were significantly elevated in the most proximal segment of the nerve root studied. FA was significantly correlated with electrophysiological measures of root function: minimum F-wave latency and peripheral motor conduction time (PMCT). In addition, FA along the compressed root also correlated with leg pain and depression score. There was also a relationship between RD and anxiety, leg pain and disability score and AD correlated with depression score. Taken together, these data show that DTI metrics are sensitive to nerve root compression in patients with stenosis as a result of age-related lumbar degeneration. Critically, they show that the changes in microstructural integrity along compressed L5 nerve roots are closely related to a number of clinical symptoms associated with the development of chronic pain as well as neurophysiological assessments of motor function. These inherent relationships between nerve root damage and phenotype suggest that the use DTI is a promising method as a way to stratify treatment selection and predict outcomes

    Microstructures Manufactured in Diamond by Use of Laser Micromachining.

    Get PDF
    Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition-MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings ("hatch spacing") (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm-1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase

    Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets

    Get PDF
    This paper presents the results of carbon nanoparticles (CNPs) production by infrared laser ablation of a graphite or a polycrystalline diamond target, submerged in one of two solvents, water or isopropanol. The targets were irradiated using a SPI fibre laser with a wavelength of 1064nm being operated at different average powers. After laser-assisted synthesis of CNPs, the resulting colloids, i.e particles in a liquid medium, were examined using the analytical techniques of dynamic light scattering, UV-Vis, Raman spectroscopy and fluorescence spectroscopy. The results show that the properties of CNPs strongly depend on processing conditions of the liquid phase-pulsed laser ablation (LP-PLA) process. In particular, the size of nanoparticles produced are affected by the processing parameters of the laser ablation. The results show that the laser processing of a graphite target in deionised water and in isopropanol produces carbon nanoparticles with properties that are beneficial for various biochemical and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Relative Effectiveness of Mating Success and Sperm Competition at Eliminating Deleterious Mutations in Drosophila melanogaster

    Get PDF
    Condition-dependence theory predicts that sexual selection will facilitate adaptation by selecting against deleterious mutations that affect the expression of sexually selected traits indirectly via condition. Recent empirical studies have provided support for this prediction; however, their results do not elucidate the relative effects of pre- and postcopulatory sexual selection on deleterious mutations. We used the Drosophila melanogaster model system to discern the relative contributions of pre- and postcopulatory processes to selection against deleterious mutations. To assess second-male ejaculate competition success (P2; measured as the proportion of offspring attributable to the experimental male) and mating success, mutant and wild-type male D. melanogaster were given the opportunity to mate with females that were previously mated to a standard competitor male. This process was repeated for males subjected to a diet quality manipulation to test for effects of environmentally-manipulated condition on P2 and mating success. While none of the tested mutations affected P2, there was a clear effect of condition. Conversely, several of the mutations affected mating success, while condition showed no effect. Our results suggest that precopulatory selection may be more effective than postcopulatory selection at removing deleterious mutations. The opposite result obtained for our diet manipulation points to an interesting discrepancy between environmental and genetic manipulations of condition, which may be explained by the multidimensionality of condition. Establishing whether the various stages of sexual selection affect deleterious mutations differently, and to what extent, remains an important issue to resolve

    Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology

    Get PDF
    Purpose Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Methods Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. Results DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. Conclusion The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function

    Diffusion tensor imaging of lumbar spinal nerves reveals changes in microstructural integrity following decompression surgery associated with improvements in clinical symptoms: A case report

    Get PDF
    The outcomes from spinal nerve decompression surgery are highly variable with a sizable proportion of elderly foraminal stenosis patients not regaining good pain relief. A better understanding of nerve root compression before and following decompression surgery and whether these changes are mirrored by improvements in symptoms may help to improve clinical decision-making processes. This case study used a combination of diffusion tensor imaging (DTI), clinical questionnaires and motor neurophysiology assessments before and up to 3 months following spinal decompression surgery. In this case report, a 70-year-old women with compression of the left L5 spinal nerve root in the L5-S1 exit foramina was recruited to the study. At 3 months following surgery, DTI revealed marked improvements in left L5 microstructural integrity to a similar level to that seen in the intact right L5 nerve root. This was accompanied by a gradual improvement in pain-related symptoms, mood and disability score by 3 months. Using this novel multimodal approach, it may be possible to track concurrent improvements in pain-related symptoms, function and microstructural integrity of compressed nerves in elderly foraminal stenosis patients undergoing decompression surgery
    • …
    corecore