21,913 research outputs found

    Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons

    Get PDF
    We compute the contribution of order αS2α2\alpha_S^2\alpha^2 to the cross section of a top-antitop pair in association with at least one heavy Standard Model boson -- ZZ, W±W^\pm, and Higgs -- by including all effects of QCD, QED, and weak origin and by working in the automated MadGraph5_aMC@NLO framework. This next-to-leading order contribution is then combined with that of order αS3α\alpha_S^3\alpha, and with the two dominant lowest-order ones, αS2α\alpha_S^2\alpha and αSα2\alpha_S\alpha^2, to obtain phenomenological results relevant to a 8, 13, and 100~TeV pppp collider.Comment: 27 pages, 8 figure

    Weak corrections to Higgs hadroproduction in association with a top-quark pair

    Get PDF
    We present the calculation of the next-to-leading contribution of order αS2α2\alpha_S^2\alpha^2 to the production of a Standard Model Higgs boson in association with a top-quark pair at hadron colliders. All effects of weak and QCD origin are included, whereas those of QED origin are ignored. We work in the MadGraph5_aMC@NLO framework, and discuss sample phenomenological applications at a 8, 13, and 100 TeV pppp collider, including the effects of the dominant next-to-leading QCD corrections of order αS3α\alpha_S^3\alpha.Comment: 29 pages, 38 figure

    The automation of next-to-leading order electroweak calculations

    Full text link
    We present the key features relevant to the automated computation of all the leading- and next-to-leading order contributions to short-distance cross sections in a mixed-coupling expansion, with special emphasis on the first subleading NLO term in the QCD+EW scenario, commonly referred to as NLO EW corrections. We discuss, in particular, the FKS subtraction in the context of a mixed-coupling expansion; the extension of the FKS subtraction to processes that include final-state tagged particles, defined by means of fragmentation functions; and some properties of the complex mass scheme. We combine the present paper with the release of a new version of MadGraph5_aMC@NLO, capable of dealing with mixed-coupling expansions. We use the code to obtain illustrative inclusive and differential results for the 13-TeV LHC.Comment: 121 pages, 16 figure

    On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    Get PDF
    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area

    A VLSI pipeline design of a fast prime factor DFT on a finite field

    Get PDF
    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented

    A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms

    Get PDF
    A parallel architecture for computation of the linear convolution of two sequences of arbitrary lengths using the Fermat number transform (FNT) is described. In particular a pipeline structure is designed to compute a 128-point FNT. In this FNT, only additions and bit rotations are required. A standard barrel shifter circuit is modified so that it performs the required bit rotation operation. The overlap-save method is generalized for the FNT to compute a linear convolution of arbitrary length. A parallel architecture is developed to realize this type of overlap-save method using one FNT and several inverse FNTs of 128 points. The generalized overlap save method alleviates the usual dynamic range limitation in FNTs of long transform lengths. Its architecture is regular, simple, and expandable, and therefore naturally suitable for VLSI implementation

    A single chip VLSI Reed-Solomon decoder

    Get PDF
    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip

    Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)

    Get PDF
    Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities - far negative Feyman-x - using conventional detection techniques. At the nominal LHC energies, quarkonia can be studies in detail in p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to 0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.Comment: 12 pages, 14 figure

    LATOR Covariance Analysis

    Full text link
    We present results from a covariance study for the proposed Laser Astrometric Test of Relativity (LATOR) mission. This mission would send two laser-transmitter spacecraft behind the Sun and measure the relative gravitational light bending of their signals using a hundred-meter-baseline optical interferometer to be constructed on the International Space Station. We assume that each spacecraft is equipped with a <1.9×1013ms2Hz1/2 < 1.9 \times 10^{-13} \mathrm{m} \mathrm{s}^2 \mathrm{Hz}^{-1/2} drag-free system and assume approximately one year of data. We conclude that the observations allow a simultaneous determination of the orbit parameters of the spacecraft and of the Parametrized Post-Newtonian (PPN) parameter γ\gamma with an uncertainty of 2.4×1092.4 \times 10^{-9}. We also find a 6×1096 \times 10^{-9} determination of the solar quadrupole moment, J2J_2, as well as the first measurement of the second-order post-PPN parameter δ\delta to an accuracy of about 10310^{-3}.Comment: 9 pages, 3 figures. first revision: minor changes to results. Second revision: additional discussion of orbit modelling and LATOR drag-free system requirement feasibility. Added references to tables I and V (which list PPN parameter uncertainties), removed word from sentence in Section III. 3rd revision: removed 2 incorrect text fragments (referring to impact parameter as distance of closest approach) and reference to upcoming publication of ref. 2, removed spurious gamma from eq. 1 - Last error is still in cqg published versio
    corecore