12 research outputs found

    Sex differences in the influence of social context, salient social stimulation and amphetamine on ultrasonic vocalizations in prairie voles

    Full text link
    Prairie voles ( Microtus ochrogaster ) are a socially monogamous rodent species and their cooperative behaviors require extensive communication between conspecifics. Rodents use ultrasonic vocalizations (USVs) to communicate and because a prairie vole breeder pair must engage in extensive cooperation for successful reproduction, auditory communication may be critical for this species. Therefore, we sought to characterize USVs in adult male and female prairie voles, and to determine how these calls are influenced by social context, salient social stimuli and the psychostimulant drug of abuse amphetamine (AMPH). Here, we characterize prairie vole USVs by showing the range of frequencies of prairie vole USVs, the proportion of various call types, how these call types compare between males and females, and how they are influenced by social stimulation and AMPH. AMPH caused a robust increase in the number of USVs in both males and females and there was a dramatic sex difference in the complexity of call structures of AMPH‐induced USVs, with males emitting more elaborate calls. Moreover, we show that novel (i.e. salient) social cues evoked differential increases in USVs across sex, with males showing a much more robust increase in USV production, both with respect to the frequency and complexity of USV production. Exposure to an estrous female in particular caused an extraordinary increase in USVs in male subjects. These data suggest that USVs may be a useful measure of social motivation in this species, including how social behaviors can be impacted by drugs of abuse.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107527/1/inz212071.pd

    Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    Get PDF
    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds

    Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors

    Get PDF
    Optimally orchestrating complex behavioral states such as the pursuit and consumption of food is critical for an organism’s survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, while genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH) and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice, to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level
    corecore