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Abstract Prairie vole breeder pairs form monogamous pair bonds, which are maintained

through the expression of selective aggression toward novel conspecifics. Here, we utilize

behavioral and anatomical techniques to extend the current understanding of neural mechanisms

that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates

mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as

enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like

receptor regulation of selective aggression is mediated through downstream activation of kappa-

opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally,

we also identified sex-specific alterations in KOR binding density within the NAc shell of paired

males and demonstrate that this alteration contributes to the neuroprotective effect of pair

bonding against drug reward. Together, these findings suggest motivational and valence

processing systems interact to mediate the maintenance of social bonds.

DOI: 10.7554/eLife.15325.001

Introduction
The ability to maintain meaningful social bonds is a critical component of human health and mental

well being, yet the neural capacity to maintain such relationships is not well understood. The socially

monogamous prairie vole (Michrotus ochrogaster) presents an ideal animal model to study the neu-

ral correlates of social bond maintenance because, unlike most mammals (Kleiman, 1977), prairie

voles form selective and enduring attachments to their mating partner (Aragona et al., 2009). In

both the field and laboratory, the maintenance of these bonds is associated with the expression of

selective aggression towards novel conspecifics as well as selective affiliation with the mating partner

(i.e., mate guarding) (Carter and Getz, 1993). Importantly, the expression of selective aggression

provides a robust and reliable assay that can be utilized in a laboratory setting to deconstruct neural

signaling pathways involved in the regulation of social bond maintenance.

To date, laboratory studies have identified that the expression of selective aggression, and there-

fore pair bond maintenance, requires the activation of both D1-like dopamine (DA) and kappa-
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opioid receptors (KORs) within the nucleus (NAc) shell as blockade of either one of the receptors

attenuates aggressive rejection of novel conspecifics (Aragona et al., 2006; Resendez et al., 2012).

Thus, regulation of pair bond maintenance requires neural systems that code evaluation of salient

environmental stimuli as well as those that are important for the generation of motivational states

(Resendez and Aragona, 2013). Interestingly, in other animal models, these receptor systems have

been shown to directly interact at the molecular level (Gerfen et al., 1990; Carlezon et al., 1998) as

well as in the transition between motivational states (Chartoff et al., 2016). However, it is unknown

if similar interactions occur in the regulation of pair bond maintenance. This study therefore endeav-

ored to examine pair bond induced neural plasticity within the DA and dynorphin/KOR systems as

well as how these systems interact to mediate the expression of selective aggression, a well estab-

lished indicator of a fully established pair bond.

Given that activation of KORs is associated with aversive states (Mucha and Herz, 1985;

Pfeiffer et al., 1986; Shippenberg and Herz, 1986; Bals-Kubik et al., 1989), we first determined if

activation of NAc KORs prior to pairing with a novel social stimulus is sufficient to tag a recently

encountered social stimulus as aversive. Next, to assess how the establishment of a pair bond alters

both motivational (DA) and aversive (dynorphin/KOR) processing systems, we conducted extensive

anatomical, neurochemical, and functional comparisons within the striatum of male and female prai-

rie voles. In total, we conducted mRNA expression analysis (RT-qPCR), protein binding measure-

ments (receptor autoradiography), and measures of DA concentration (fast-scan cyclic-voltammetry)

to identify sex-specific alterations within the DA and dynorphin/KOR systems of pair bonded voles.

We next utilized site-specific behavioral pharmacology to examine interactions between NAc shell

D1-like and KORs in the expression of selective aggression. Finally, in male prairie voles, we show

that pair bonding, but not other social manipulations, decreases the rewarding properties of the psy-

chostimulant amphetamine and that this attenuation requires the activation of NAc shell KORs. In

total, the present study demonstrates that the development of a pair bond is underpinned by sex-

specific modifications in motivational (DA/D1) and valence (dynorphin/KOR) processing systems, that

eLife digest The bond between parents is one of the most important social relationships that

humans have. Prairie voles are one of the few other mammals whose individuals also form long-term

social bonds after having offspring together, so they have frequently been used to study the brain

mechanisms that underlie such bonding. However, most previous studies have focused only on how

the bond between a pair of mating partners is formed: little is known about how this bond is then

maintained over months and years.

When a prairie vole forms a bond with a mate, it will then aggressively reject other prairie voles.

This “selective aggression” only happens once a social bond between two mating prairie voles is

formed, so this behavior can be used as a proxy to confirm that the social bond exists.

In order to study how prairie voles maintain bonds with a mate, Resendez et al. tracked what

happens in the brain of a prairie vole during selective aggression. The experiments showed that this

aggressive behaviour coincides with changes in gene expression and brain chemistry that make it

unpleasant for a prairie vole to be exposed to voles that are not its partner. For male prairie voles –

but not females – these changes only happened if the female mating partner became pregnant

during the cohabitation period.

The changes that occur in the brain as a result of bonding with a partner also mean that drugs

that are normally addictive are no longer pleasant and rewarding to the prairie vole. Indeed,

forming a social bond between mating animals alters the brain in similar ways to the effects

produced by addictive drugs. Thus, in a sense, each member of the mating pair becomes ‘addicted’

to their partner.

The results presented by Resendez et al. also have implications for humans. They suggest that

having a strong social support network is a powerful way of preventing casual drug use from

developing into compulsive drug addiction. This may also mean that positive social relationships

could help to treat people with drug addiction problems.

DOI: 10.7554/eLife.15325.002
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these systems interact to mediate selective aggression in both sexes, and that male specific altera-

tions in the dynorphin/KOR system buffers against the rewarding properties of amphetamine.

Results

KORs within the NAc shell encode social aversion
Activation of NAc shell KORs is required for the expression of selective aggression by pair bonded

voles (Resendez et al., 2012); however, the psychological processes that underlie the expression of

this behavior are not well understood. In other rodent species, activation of these receptors has

been shown to induce aversion as well as mediate avoidance behaviors (Land et al., 2008; Al-

Hasani et al., 2015). For example, pairing of a previously neutral stimulus with either an aversive

experience that results in KOR activation, such as stress, or with direct pharmacological activation of

these receptors results in the avoidance of that stimulus during subsequent encounters (Land et al.,

2008). Given the known relationship between aversive processing of environmental stimuli, avoid-

ance behaviors (Boren et al., 1959; D’Amato et al., 1967), and KOR activation, we hypothesized

that one mechanism in which NAc shell KORs mediate social avoidance behaviors is through the

encoding of novel social stimuli as aversive.
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Figure 1. NAc shell KORs encode social aversion. (a) Experimental design. (b) Histological verification of injection

sites. (c) Control males (aCSF) paired with a female partner for 1 hr showed no social preference or aversion (n =

6). In contrast, activation of NAc shell KORs via site-specific administration of a KOR agonist induced a partner

aversion (n = 7). (d) Males that received site-specific injections of the KOR agonist also spent significantly less time

in the partner’s cage as well as more time in the chamber containing the stranger. (e) There was no difference in

total contact time between the two groups. Summary data are presented as mean ± SEM. *p<0.05, **p<0.005.

DOI: 10.7554/eLife.15325.003

The following figure supplement is available for figure 1:

Figure supplement 1. Social and grooming behavior during 1-hr cohabitation.

DOI: 10.7554/eLife.15325.004
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To determine if activation of NAc shell KORs during a social encounter results in social avoidance

behaviors, we utilized a modified version of the partner preference paradigm (Figure 1a). Specifi-

cally, we employed a social pairing condition (1 hr cohabitation with an opposite sex conspecific)

that is insufficient to produce a preference for the familiar partner over an unfamiliar conspecific (the

stranger). A lack of a preference for either social stimulus is indicated by equivalent amounts of time

spent with the partner and stranger during the social choice test, suggesting that both social stimuli

are of equal valences. As expected, a Wilcoxon signed rank sum test for non-parametric data dem-

onstrated that control males treated with aCSF did not show a preference for either individual (W(5)

= 33, z = �0.97, p=0.33) (Figure 1b,c). Conversely, male subjects that were administered a KOR

agonist (1 mg U50,488) into the NAc shell immediately prior to pairing with the female partner

avoided the female that had been paired with KOR activation and therefore displayed a robust pref-

erence for contact with the novel female that had not been previously paired with NAc shell KOR

(Wilcoxon signed rank sum test, W(6) = 32.5, z = -2.56, p=0.01) (Figure 1b,c). In addition to differen-

ces in direct contact time, activation of NAc shell KORs prior to pairing with a social stimulus also

resulted in differences in the duration of time spent in each stimulus chamber (two-way ANOVA,

(F(2,36) = 7.07, p=0.003). Specifically, males that received administration of a KOR agonist avoided

the chamber containing the partner (Bonferroni’s post hoc test, p=0.02) and spent more time in the

chamber occupied by the stranger (p=0.0006) (Figure 1d). Finally, control males and males receiving

site-specific administration of the KOR agonistdid not differ in total contact time (time spent with

partner + time spent with stranger) (t-test, t(11) = 0.35, p=0.73), indicating that reduced contact with

the partner did not result from a general decrease in motivation for social contact (Figure 1e). Both

groups of male subjects also did not differ in affiliative social behavior or grooming behavior during

the 1 hr cohabitation (Figure 1—figure supplement 1).

Together, these data suggest that activation of KORs within the NAc shell induces social avoid-

ance behaviors, potentially through the assignment of negative valence onto a previously neutral

social stimulus. Given that activation of NAc shell KORs is required for the expression of selective

aggression in pair bonded voles, it is possible that KOR activation within the NAc shell mediates pair

bond maintenance by assigning social stimuli other than the mating partner with a negative valence

signal. We therefore conducted our next series of experiments to determine how pair bonding alters

neural systems involved in the regulation of selective aggression to promote pair bond maintenance.

Pair bond induced alteration in mRNA expression within the ventral
striatum
Sexually naı̈ve prairie voles find social novelty rewarding and will readily approach and interact with

novel conspecifics. In stark contrast, a pair bonded vole will avoid and aggressively reject this same

social stimulus, suggesting that they find social stimuli—other than their mating partner or off-

spring—to be aversive (Resendez and Aragona, 2013). We therefore hypothesized that this behav-

ioral transformation is mediated by an up-regulation of neural systems that regulate the expression

of selective aggression, such as both the D1-like receptor and dynorphin/KOR systems within the

ventral region of the striatum. Thus, to determine if non-pair bonded (sibling housed) and pair

bonded (2 weeks cohabitation with an opposite-sex conspecific) voles differ in the expression level

of mRNA for genes that encode proteins involved in the regulation of selective aggression, we uti-

lized RT-qPCR to compare the level of mRNAs related to the DA and dynorphin/KOR systems. For

all groups, comparisons were made within the dorsal and ventral striatum (i.e., NAc).

Extensive cohabitation with a mating partner predominately altered the expression of mRNA for

genes that code for proteins associated with pair bond maintenance. Specifically, within the ventral

striatum, t-test results show that pair bonded males and females showed higher levels of mRNA for

the gene encoding dynorphin (Pdyn) (Male: t(24) = 2.26, p=0.03; t(26) = 3.05, p=0.005), the endoge-

nous ligand for KORs. They also showed elevated levels of mRNA expression for the gene encoding

D1-like receptors (Drd1) (t-test; Male: t(24) = 2.86, p=0.009; Female: t(28) = 3.42, p=0.002) (Figure 2a

and c). For paired males, similar elevations in mRNA for the gene that encodes KOR (Oprk1) also

occurred; however, due to high levels of variability in the expression of this gene, elevations in

Oprk1 mRNA did not significantly differ from non-paired males (Table 1). Only moderate elevations

in Oprk1 mRNA levels occurred in females and this elevation failed to reach significance (Table 1).

Finally, differences in the expression of mRNA for Drd1 and Pdyn were not identified within the dor-

sal striatum indicating that these changes are specific to the ventral region of the striatum (Table 2).

Resendez et al. eLife 2016;5:e15325. DOI: 10.7554/eLife.15325 4 of 35

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.15325


To next determine if differences in expression differences following 2 weeks of male-female

cohabitation were specific to genes that encode proteins involved in the regulation of pair bond

maintenance, we also examined the expression of genes that encode proteins that regulate social

behaviors associated with pair bond formation. Within the NAc, these proteins include D2-like DA

receptors, mu-opioid receptors (MORs), and the oxytocin receptor. Following 2 weeks of male-

female cohabitation, differences in the expression of genes related to pair bond formation (Drd2,

Penk/Oprm1, Oxtr) were not found within the ventral striatum of pair bonded voles indicating that

the differences identified above are specific to neural systems that regulate pair bond maintenance

(Table 1). Also in contrast to the above findings, sex-specific alterations in the expression of genes

related to pair bond formation were identified within the dorsal striatum. Specifically, compared to

non-paired subjects, pair bonded males had higher levels of Drd3 mRNA (t-test; t(26) = 2.34, p=0.03)
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Figure 2. Pair bonding alters mRNA expression within the NAc. (a) Pair bonding increased the expression of Drd1 and Pdyn mRNA within the VS of

males (n = 15/group). (b) Pair bonding decreased Drd3 mRNA expression within the DS of males (n = 15–16/group). (c) Similar to males, pair bonding

increased the expression of Drd1 and Pdyn within the VS of females (n = 6–23/group). (d) Pair bonding significantly decreased Drd2 mRNA within the

DS of paired females (n = 16/group). *p<0.05, **p<0.005.
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while pair bonded females had higher levels of Drd2 mRNA (t-test; t(26) = 2.12, p=0.04) (Figure 2b,

d). No other differences were identified within the dorsal striatum.

Overall, the above findings are consistent with the proposed mechanism that the establishment

of a pair bond is associated with region specific alterations in neural systems that regulate selective

aggression. However, an up-regulation in the expression of mRNA is not always indicative of an

increase in protein levels. We therefore utilized receptor autoradiography to examine pair bond

induced differences in KOR binding density within the striatum. We focused on KORs in the present

study because it has previously been shown that pair bonding increases the expression of D1-like

receptors specifically within the ventral striatum (Aragona et al., 2006).

Sex specific alterations in KOR binding
To determine whether pair bonding alters striatal KOR density, KOR binding densities were com-

pared between non-paired (i.e., same-sex sibling housed) and pair bonded prairie voles (i.e., 2

weeks male-female cohabitation) of both sexes. Compared to non-paired (sibling housed) males, a

two-way ANOVA indicated that pair bonded males had lower levels of striatal KOR binding density

(F(1,120) = 17.51, p=0.0001; Figure 3a,b). Further examination of pair bond induced alterations in

KOR binding density within the striatum of males revealed that the decrease in KOR binding was

specific to the ventral region of the NAc shell (Bonferroni’s post hoc test, p=0.01; Figure 3b;

Table 1. Non-significant statistics for mRNA comparisons in the ventral striatum.

Sex

Gene Male Female

Pdyn NA NA

Penk t(24) = 1.80, p = 0.09 t(26) = 1.92, p = 0.07

Oprk1 t(24) = 1.99, p = 0.06 t(11) = 0.36, p = 0.72

Oprm1 t(24) = 0.13, p = 0.90 t(26) = 0.70, p = 0.49

Drd1 NA NA

Drd2 t(24) = 0.10, p = 0.33 t(37) = 1.57, p = 0.13

Drd3 t(24) = 1.58, p = 0.13 t(26) = 0.75, p = 0.46

Oxtr t(24) = 1.72, p = 0.10 t(37) = 1.12, p = 0.27

Avpr1a t(24) = 0.82, p = 0.43 t(37) = 0.25, p = 0.81

Nadh t(23) = 1.23, p = 0.23 t(28) = 0.79, p = 0.44

DOI: 10.7554/eLife.15325.006

Table 2. Non-significant statistics for mRNA comparisons in the dorsal striatum.

Sex

Gene Male Female

Pdyn t(26) = 0.80, p = 0.43 t(26) = 0.21, p = 0.83

Penk t(26) = 0.56, p = 0.58 t(26) = 0.13, p = 0.90

Oprk1 t(26) = 0.17, p = 0.86 t(26) = 1.19, p = 0.24

Oprm1 t(26) = 0.63, p = 0.53 t(26) = 0.05, p = 0.96

Drd1 t(26) = 1.15, p = 0.26 t(26) = 0.88, p = 0.39

Drd2 t(26) = 0.18, p = 0.86 NA

Drd3 NA t(26) = 1.69, p = 0.10

Oxtr t(26) = 0.20, p = 0.84 t(26) = 1.50, p = 0.15

Avpr1a t(26) = 0.56, p = 0.58 t(26) = 0.85, p = 0.40

Nadh t(26) = 0.97, p = 0.34 t(26) = 0.005, p = 0.10

DOI: 10.7554/eLife.15325.007
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Table 3), the region of the striatum where KORs act to regulate selective aggression

(Resendez et al., 2012) and mediate aversion (Al-Hasani et al., 2015).

In contrast to paired males, significant alterations in KOR binding density following the establish-

ment of a pair bond were not identified in females (F(1,108) = 3.50, p>0.06; Figure 3c,d) suggesting

that pair bonding induces sex-specific alterations in KOR binding density. We therefore next com-

pared KOR binding density between males and females before and after the establishment of a pair

bond. Prior to the establishment of a pair bond, a two-way ANOVA indicated that non-paired (sib-

ling housed) males have significantly higher levels of KOR binding density within the striatum com-

pared to non-paired females (two-way ANOVA, F(1,114) = 38.14, p=0.0001). Specifically, non-paired

males had significantly higher levels throughout the NAc, including the NAc core (Bonferroni’s post
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Figure 3. Pair bonding alters KOR binding within the striatum of males. (a,b) Pair bonding decreased KOR binding

in the dorso-medial and ventral NAc shell of males (n = 11/group). (c,d) There was no significant effect on KOR

binding density in females (n = 10/group). Summary data are presented as mean ± SEM. *p<0.05.

DOI: 10.7554/eLife.15325.008

The following figure supplement is available for figure 3:

Figure supplement 1. Sex differences in KOR binding density before and after pair bonding.

DOI: 10.7554/eLife.15325.009

Table 3. Non-significant statistics for comparisons of KOR binding density in paired versus unpaired

males.

Striatal sub-region Bonferonni’s post hoc test

Dorso-medial striatum p>0.99

Dorso-lateral striatum p>0.99

NAc core p = 0.41

Nac dorso-medial shell p = 0.07

NAc lateral shell p = 0.99

DOI: 10.7554/eLife.15325.010
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hoc test; p=0.02), the dorso-medial region of the NAc shell (p=0.0001), and the ventral region of the

NAc shell (p=0.005). Interestingly, these sex differences in KOR binding density were not identified

in pair bonded males and females as males no longer showed higher levels in KOR binding density

(two-way ANOVA, F(1,114) = 0.36, p=0.55) (Figure 3—figure supplement 1). Together, these data

suggest that pair bonding results in a reduction in KOR binding density within the NAc of male, but

not female prairie voles.

Prairie vole DA release dynamics
Previous studies have established an essential role for the activation of NAc shell D1-like receptors

in the expression of social behaviors important for pair bond maintenance (Aragona et al., 2009).

These receptors are primarily of the low-affinity sub-type (Richfield et al., 1989) and their activation
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Figure 4. Striatal DA transmission in non-pair bonded prairie voles. (a,b) Representative color plots of DA transmission throughout the striatum of (a)

male and (b) female prairie voles. (c,e) A 1-pulse depolarizing stimulation evokes the greatest magnitude of DA release within the dorsal striatum and

the magnitude of this release decreases along a dorsal to ventral gradient within the striatum of (c) males and (e) females. (d,f) An inverse relationship is

seen with burst facilitation as the greatest ratio of DA release occurs within the NAc shell, an intermediate ratio occurs within the NAc core, and the

lowest ratio occurs within the dorsal striatum of (d) males and (f) females. (g–i) Compared to male prairie voles, a 20-pulse stimulation evokes a greater

magnitude of DA release within the (g) dorsal striatum and the (h) NAc core of females. (i) No sex difference in DA transmission occurred within the

NAc shell. Summary data are presented as mean ± SEM. *p<0.05, **p<0.005, ***p<0.0005.
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requires high concentrations of DA to be released, such as that which occurs during burst firing of

DA neurons (Gonon, 1997; Cheer et al., 2007). Given that activation of D1-like receptors require

high concentrations of DA release and that selective aggression is only expressed in the pair bonded

state, we predicted that pair bonded voles would have greater concentrations in DA release specifi-

cally within the NAc shell. To compare DA release dynamics between non-bonded and pair bonded

voles, we utilized fast-scan cyclic-voltammetry (FSCV) to measure real-time DA release across the

striatum. However, given that striatal DA release properties are unknown in this species, we first con-

ducted a detailed characterization of DA release dynamics within the prairie vole striatum

(Figure 4a,b).

Consistent with other mammals (Jones et al., 1995; Calipari et al., 2012), the concentration of

striatal DA release evoked by a single pulse stimulation ([DA]1p) significantly decreased along a dor-

sal to ventral gradient (one-way ANOVA; Male: F(2,30) = 17.28, p<0.000; Female: F(2,27) = 8,57,

p=0.001). Post hoc Tukey comparisons revealed that both the NAc core (Male: p=0.009; Female:

p=0.04) and the NAc shell (Male: p=0.000; Female: p=0.001) had significantly lower levels of
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Figure 5. Pair bonding enhances NAc shell DA release. (a,b) Representative color plots of stimulated DA release following a 1-pulse depolarizing

stimulation in (a) male and (b) female subjects. For both sexes, top row shows representative color plots for non-paired subjects and bottom row shows

representative color plots for pair bonded subjects. (c,d) Pair bonding had no effect on DA transmission within the (c) dorsal striatum (n = 11–12/group)

or (d) the NAc core of males (n = 10/group). (e) Within the NAc shell, a 1-pulse stimulation resulted in significantly greater DA release within the NAc

shell of paired males compared to non-paired male controls (n = 9–10/group). (f,g) There was no difference in peak DA release between non-paired

and pair bonded females following a 1-pulse stimulation within the (f) dorsal striatum (n = 8–11/group) or (g) the NAc core (n = 8–9/group). (h) Similar

to males, a 1-pulse depolarizing stimulation resulted in a greater level of DA release within of the NAc shell of paired females compared to non-paired

females (n = 7–8/group). Summary data are presented as mean ± SEM. *p<0.05.

DOI: 10.7554/eLife.15325.012

The following figure supplements are available for figure 5:

Figure supplement 1. Sex differences in striatal dopamine release following the establishment of a pair bond.

DOI: 10.7554/eLife.15325.013

Figure supplement 2. Pair bonding increases selective aggression in both male and female prairie voles.

DOI: 10.7554/eLife.15325.014
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stimulated DA release compared to the dorsal striatum (Figure 4c,e). Also, consistent with other

species (Zhang et al., 2009), the magnitude of DA release following stimulation parameters that

evoke burst-like firing of DA neurons, such as an extra-physiological 20-pulse stimulation ([DA]20p),

differed across striatal sub-regions, with the most robust impact occurring within the NAc shell, a

moderate impact within the NAc core, and a minimal effect within the dorsal striatum (one-way

ANOVA, Male: F(2,28) = 11.22, p=0.0003; Female: F(2,25) = 10.60, p<0.000). This effect is represented

by the greatest ratio of evoked DA release ([DA]20p/[DA]1p) within the NAc shell (Tukey post hoc

test; Male: p=0.0002; Female: p=0.0004), an intermediate ratio within the NAc core (Tukey post hoc

test; Male: p=0.02; Female: p=0.03), and the lowest ratio within the dorsal striatum (Figure 4d,f). In

addition, a two-way ANOVA followed by Bonferroni’s post hoc tests identified significant sex-differ-

ences in striatal DA release following a 20-pulse stimulation within the dorsal striatum (F(1,10) = 5.25,

p=0.002; p=0.03, Figure 4g) as well as the NAc core (F(1,34) = 4.05, p=0.05; p=0.05, Figure 4h), but

not the NAc shell (F(1,32) = 1.77, p=0.1, Figure 4i). Similar sex differences have previously been

reported in other species (Walker et al., 2000). Overall these results suggest that general striatal

DA release patterns appear to be conserved among rodents.

Pair bond induced enhancement of DA release
Next, to test the hypothesis that pair bonded voles have elevated DA release specifically within the

NAc shell of the striatum, electrically evoked DA release was compared across striatal sub-regions of

pair bonded and non-pair bonded voles (Figure 5a,b). As predicted, t-test comparisons indicated

that pair bonding significantly increased peak DA release within the NAc shell of pair bonded voles

(Male: t(17) = 2.44, p=0.03; Female: t(13) = 2.48, p=0.03), but not other regions of the striatum (Dorsal

striatum male: t(21) = 0.09, p=1.75; Dorsal striatum female: t(17) = 1.26, p=0.22; NAc core male: t(18)
= 0.87, p=0.40; NAc core female: t(15) = 0.73, p=0.48) (Figure 5c–h). Additionally, although pair

bonding significantly elevated NAc shell DA release in both sexes, the average percent increase was

lower in males (34%) compared to females (99%) (Figure 5e,h). Direct comparisons of peak DA

release between pair bonded males and females indicated that pair bonded females had signifi-

cantly higher levels of DA release within the NAc shell compared to that of pair bonded males (Fig-

ure 5—figure supplement 1). This sex difference in pair bond induced changes in DA transmission

is unlikely due to initial sex differences in NAc shell DA release as differences in DA release within

the NAc shell were not identified between non-paired male and females (Figure 4). Moreover, given

that the release of DA is required for the activation of D1-like receptors that mediate selective

aggression and that displays of selective aggression are qualitatively larger in pair bonded males

than females (Figure 5—figure supplement 2), we initially expected increases in DA transmission to

be greater in males.

One possible explanation underlying sex differences in pair bond induced alterations in DA trans-

mission is that the influence of fecundity on pair bond strength differs between males and females

(Resendez et al., 2012; McCracken et al., 2015). More specifically, for pair bonded males, but not

females, the strength of the pair bond, as indicated by the magnitude of selective aggression dis-

played toward intruders, is dependent on pair fecundity. We therefore tested the hypothesis that

variations in pair bond induced increases in DA release between males and females were associated

with reproductive success.

Pair fecundity influences DA transmission dynamics in a sexually
dimorphic manner
Prior to FSCV recordings of stimulated DA release in striatal slices, fecundity of the pair was

assessed by determining the stage of pregnancy following 2 weeks of male-female cohabitation.

Briefly, the stage of pregnancy was determined as previously described by measuring the average

neonatal weight of the offspring, with larger neonatal weights indicating shorter delays in the onset

of pregnancy (Curtis, 2010; Resendez et al., 2012). Measures of neonatal weight were then used to

classify the pairs as either optimally (mating and fertilization occurring within 48–72 hr of pairing) or

sub-optimally (delay in establishment of pregnancy) pregnant (Resendez et al., 2012).

Following 2 weeks of cohabitation with an opposite sex partner, males from optimally pregnant

pairs showed significantly higher levels of aggression than males from sub-optimally pregnant pairs

(t-test, t(9) = 2.54, p=0.03) (Figure 6a). In contrast, reproductive status had no impact on pair bond
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Figure 6. Relationship between striatal DA release and characteristics of pair bonding. (a) Pair bond induced

increases in selective aggression was dependent on fecundity in males as males from optimally pregnant pairs

were more aggressive than males from sub-optimally pregnant pairs (n = 5–6/group). (b) Conversely, pregnancy

optimality had no effect on attack frequency in females (n = 4–7/group). (c) Within the NAc shell, males whose

females were optimally pregnant showed significantly greater levels of DA release (n = 4–18/group). (d) In

contrast, for females, there was no difference in peak DA release within the NAc shell between non-paired females

and paired females categorized by their reproductive status (n = 5–13/group). (e) Among pair bonded males,

neonatal weight (an established indicator of gestational stage) was positively correlated with peak DA release

within the NAc shell (n = 23). (f) However, there was no relationship between peak DA release and reproductive

status in paired females. (g,h) Finally, in relation to attack frequency, there was a positive correlation between peak

DA release and attack frequency within the within the NAc shell of (g) paired males (n = 8), but no such

relationship was identified among paired females (n = 10). Summary data are presented as mean ± SEM. *p<0.05.

DOI: 10.7554/eLife.15325.015

The following figure supplements are available for figure 6:

Figure supplement 1. Sex differences in selective aggression by fecundity.

DOI: 10.7554/eLife.15325.016

Figure 6 continued on next page
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strength in paired females as females from optimally and sub-optimally pregnant pairs did not differ

in levels of selective aggression (t-test, t(9) = 0.24, p=0.82) (Figure 6b). Moreover, direct compari-

sons of aggression levels among males and females from sub-optimally and optimally pregnant pairs

indicates that sex differences in the magnitude of selective aggression that is displayed toward an

intruder depends on pair fecundity (two way ANOVA, F(1,37) = 8.32, p=0.007). Specifically, although

paired males are generally more aggressive than paired females, when aggression levels were fur-

ther compared by fecundity classification, only males from optimally pregnant pairs showed signifi-

cantly higher levels of selective aggression than females (Bonferroni’s post hoc test, optimally

pregnant: p=0.01, sub-optimally pregnant: p>0.99) (Figure 6—figure supplement 1). Thus, pair

fecundity strongly influences pair bond strength in male, but not female prairie voles and only males

from optimally pregnant pairs shower higher levels of aggression than paired females. We next

determined if fecundity also resulted in sex specific alterations in DA transmission.

Similar to measures of selective aggression, fecundity influenced DA transmission within the NAc

shell in a sex-specific manner. Specifically, examination of DA release properties in relation to the

pairs reproductive status revealed that only males from optimally pregnant pairs showed significantly

greater elevations in NAc shell DA release compared to non-paired males (one-way ANOVA, F(3,39)
= 0.29, p=0.05; Dunnett’s post hoc test, p=0.04) (Figure 6c). In contrast to paired males, reproduc-

tive status did not influence NAc shell DA transmission dynamics of paired females (one-way

ANOVA, F(3,31) = 1.67, p=0.20). Rather, females of all reproductive categories (not pregnant, sub-

optimally pregnant, or optimally pregnant) showed modest elevations in stimulated DA release com-

pared to non-paired females (Figure 6d). Thus, it is possible that sex-differences in the magnitude

of change in NAc shell DA transmission dynamics results from paired females showing elevations in

stimulated DA release regardless of reproductive status, whereas only males from optimally preg-

nant pairs (7 out of 22 total pairs) had enhanced DA transmission within the NAc shell.

To further explore the relationship between pair fecundity and NAc shell DA transmission dynam-

ics, we next examined the relationship between neonatal weight and DA release. For paired males,

the magnitude of stimulated DA release was positively correlated with neonatal weight, with fecun-

dity accounting for nearly 30% of the variation (linear regression, R2 = 0.29, F(1,20) = 8.16, p=0.01)

(Figure 6e). Conversely, there was no relationship between fecundity and the magnitude of stimu-

lated DA release within the NAc shell DA of paired females (linear regression, R2 = 0.32, F(1,8) =

3.77, p=0.09 (Figure 6f). Together, these data suggest that reproductive status alters DA transmis-

sion within the NAc shell of paired voles in a sex-specific manner. Moreover, these effects are pri-

marily localized to the NAc shell as paired voles categorized by their reproductive status did not

differ in DA transmission dynamics within the NAc core or dorsal striatum (Figure 6—figure supple-

ment 2). However, it should be noted that despite a lack of overall differences in DA transmission

within the dorsal striatum based on the categorization of pairs by pregnancy, a comparatively mod-

est correlation between DA transmission and pregnancy was found within the dorsal striatum of

males (Figure 6—figure supplement 2). Nonetheless, these data suggest that fecundity exerts sex-

specific effects on DA transmission dynamics in pair bonded prairie voles. Given the identified rela-

tionship between fecundity and selective aggression and fecundity and DA transmission, we next

examined if variations in DA transmission within the NAc shell contribute to variable levels of selec-

tive aggression in paired males.

Prior to measures of stimulated DA release, resident intruder test were administered to male and

female subjects by placing a same-sex intruder into the test subjects home cage. Following the com-

pletion of behavioral testing, stimulated DA release was measured within the striatum and the fre-

quency of attack behavior was quantified by an experimentally blind observer. These measures were

subsequently utilized to assess the relationship between the magnitude of stimulated DA release

and the degree of selective aggression displayed toward a resident intruder.

For pair bonded males, the intensity of aggression directed toward a resident intruder was posi-

tively correlated with NAc shell DA release, accounting for over 40% of the variation (linear

Figure 6 continued

Figure supplement 2. Impact of fecundity on dopamine transmission within the dorsal striatum and NAc core of

paired male and female prairie voles.

DOI: 10.7554/eLife.15325.017
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Figure 7. Pair bonding increases KOR modulation of NAc shell DA release in male prairie voles. (a,b) Similar to

other species, bath application of a KOR agonist decreases DA release in the NAc shell of male and female prairie

voles. (c,d) Non-paired males and females did not differ in (c) the IC50 of BRL 5237 (a KOR agonist) or (d) in the

slope of the dose response curve. (e) Pair bonding induced sex-specific alterations in KOR modulation of DA

Figure 7 continued on next page
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regression, R2 = 0.41, F(1,9) = 6.32, p=0.03) (Figure 6g). In contrast, no relationship between NAc

shell DA release and selective aggression was identified in paired females (linear regression, R2 =

0.32, F(1,8) = 3.77, p=0.09) (Figure 6h). Additionally, no relationship between stimulated DA release

and attack frequency was found within other regions of the striatum for either sex (Figure 6—figure

supplement 2). Thus, the relationship between stimulated DA release and attack behavior in pair

bonded prairie behaviors occurs in a sex and region specific manner. When these data are consid-

ered in combination with site-specific pharmacology data demonstrating that activation of D1-like

DA receptors specifically within the NAc shell is required for the expression of selective aggression

(Aragona et al., 2006), they suggest that the degree to which DA transmission dynamics are altered

within the NAc shell of paired males may underlie fecundity induced modulation of pair bond

strength. In other words, enhancement of DA release would facilitate the activation of low-affinity

D1-like receptors, possibly leading to the display of higher levels of aggression by males from opti-

mally pregnant pairs. Moreover, stimulation of D1-like receptors results in the production of dynor-

phin (Engber et al., 1992), the endogenous ligand for KORs (Chavkin et al., 1982) and activation of

these receptors is also required for the expression of selective aggression (Resendez et al., 2012).

Therefore, we next examined the possibility of pair bond induced alterations in interactions between

these systems.

Pair bonding alters KOR regulation of DA transmission in a sex-specific
manner
Activation of KORs within the NAc reduces DA release within this region (Britt and McGehee,

2008). Given that pair bonding altered NAc KOR expression pattern, we next compared KOR modu-

lation of DA transmission within the NAc shell of non-paired and paired voles. Similar to other

rodent species (Britt and McGehee, 2008), bath application of a KOR agonist (BRL 5237) onto stria-

tal slices of non-pair bonded voles reduced stimulated DA release within the NAc shell (Figure 7a,

b). Similar effects on DA transmission were observed in both non-paired males and females as the

concentration response curves did not significantly differ between the sexes (two-way ANOVA, F(1, 5)
= 1.59, p=0.26). Moreover, a t-test did not identify significant sex differences in the dose required

to achieve a 50% reduction in DA release (IC50: t(5) = 0.03, p=0.98; Figure 7C) or in the slope of the

concentration response curve (t(5) = 1.28, p=0.26, Figure 7D). However, in contrast to other species,

a much higher dose of the KOR agonist was needed to achieve a 50% decrease in DA release (IC50

~ten fold greater compared to other rodent species; [Britt et al., 2012]).

The necessity to use higher doses of a KOR agonist in the present study is consistent with our

previous findings showing that, compared to other rodents, prairie voles also require about a 10X

higher dose of a peripherally administered KOR agonist to achieve significant alterations in KOR-

mediated analgesia as well as locomotor activity (Resendez et al., 2012). The consistent require-

ment for higher doses of a KOR agonist to observe either a behavioral or physiological impact in

prairie voles suggests potential value in comparing the genetic sequence of the prairie vole KOR to

other species that have been used to study KOR pharmacology (e.g., rats, mice, guinea pigs, and

humans). Indeed, the prairie vole KOR is distinct from the above-mentioned species as its genetic

sequence diverges from that of rats and mice (whose KOR structure is quite homologous) as well as

Figure 7 continued

transmission within the NAc shell (f,g) Following the establishment of a pair bond, KOR mediated decrease of

stimulated DA release was enhanced within the NAc shell of (f) males (n = 3–5/group), but not (g) females. (h,i)

Compared to non-paired males, pair bonding significantly decreased (h) the IC50 of BRL 5237 as well as (i) the

slope of the dose response curve in paired males. (j,k) Pair bonding did not alter KOR mediated DA transmission

in females (n = 3–4/group). Summary data are presented as mean ± SEM. **p<0.005.

DOI: 10.7554/eLife.15325.018

The following figure supplements are available for figure 7:

Figure supplement 1. Comparison of the prairie vole KOR protein sequence to other rodent species and humans.

DOI: 10.7554/eLife.15325.019

Figure supplement 2. Sex differences KOR modulation of NAc shell DA release following the establishment of a

pair bond.

DOI: 10.7554/eLife.15325.020
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humans and guinea pigs (whose KORs also share substantial homologies) (Figure 7—figure supple-

ment 1). It is also notable to mention that the prairie vole KOR is more similar to that of humans and

guinea pigs than that of rats and mice in which most pharmacological studies have been conducted.

In total, there are four amino acids that are unique to prairie voles, humans, and guinea pigs (Alanine

28, Serine 186, Aspartic acid 218, Aspartic acid 374), one amino acid that is unique to humans and

prairie voles (Isoleucine 232), and fifteen amino acids that are unique to prairie voles, including one

residue that is located in the dynorphin binding site (Rasakham and Liu-Chen, 2011; Wu et al.,

2012). It is possible that these genetic differences may partially account for species differences in

KOR pharmacology and determining how ligands interact with the prairie vole KOR will be an impor-

tant future area of study. Nevertheless, the above data demonstrate that activation of KORs within

the prairie vole striatum produces the expected decreases in DA transmission.

We next compared KOR modulation of DA transmission within the NAc shell of non-bonded (sib-

ling housed) and pair bonded (2 weeks cohabitation with a mating partner) prairie voles to deter-

mine if pair bond induced alterations in KOR protein binding within the NAc shell impact KOR

modulation of DA transmission. Similar to anatomical changes, pair bonding robustly altered KOR

modulation of DA release within the NAc shell of pair bonded males, while only producing very

modest alterations in females (Figure 7e). More specifically, in male prairie voles, pair bonding

resulted in a leftward shift in the concentration response curve (two-way ANOVA, F(1, 6) = 15.67,

p=0.008) and significantly larger reductions in stimulated DA release at multiple concentrations of

the KOR agonist (Bonferroni’s post hoc test; 0.1 mM, p=0.03;. 3 mM, p=0.0007; 1 mM, p=0.0004;

3 mM, p=0.0003; 10 mM, p=0.002; 20 mM, p=0.02) (Figure 7f). In contrast, the concentration

response curve only slightly differed between paired and non-paired females (two-way ANOVA,

F(1, 6) = 9.21, p=0.03) with only one resulting in greater reduction in stimulated DA release (Bonferro-

ni’s post hoc test; 0.3 mM, p=0.02) (Figure 7g, Table 4). Overall, these data suggest that alterations

in paired males were more dramatic than those that occurred in paired females.

Comparison of the IC50 between paired and non-paired voles revealed that a lower dose of the

KOR agonist was needed to achieve a 50% decrease in stimulated DA release within the NAc shell

of pair bonded males (t-test; IC50; t(6) = 4.92, p=0.002, Figure 7h). The slope of the concentration

response curve also significantly differed between paired and non-paired males (t-test; t(6) = 3.74,

p=0.009, Figure 7i). Given that the density of KOR binding is reduced in pair bonded males, these

data suggest that pair bonding may result in mechanistic changes in the function of the KOR in

males, but not females, as similar measures did not significantly differ between paired and non-

paired females (IC50: t-test; t(6) = 1.36, p=0.22; Figure 7J and slope: t-test; t(6) = 0.55, p=0.60;

Figure 7k). Moreover, direct comparisons of the concentration response curves for paired males and

females identified a leftward shift in the concentration curve of paired males (two-way ANOVA,

F(1, 7) = 9.60, p=0.02) and multiple doses that produced significantly greater inhibition of DA release

in paired males compared to females (Bonferroni’s post hoc test; 0.1 mM, p=0.02; 0.3 mM, p=0.004;

1 mM, p=0.001; 3 mM, p=0.009) (Figure 7—figure supplement 2). However, it should be noted that

paired males and females did not significantly differ in IC50 or slope of the concentration response

curve (Figure 7—figure supplement 2). Nonetheless, the present data suggest that although KOR

binding is reduced within the NAc shell of pair bonded males, the function of these receptors may

be enhanced as greater reductions in KOR induced decreases in stimulated DA release occurred

within the NAc shell of pair bonded males.

In summary, data from the present study reveal that both the DA and dynorphin/KOR systems

within the NAc shell undergo sex-specific alterations following the establishment of a pair bond

(Figure 8a,b). Specifically, both sexes show increases in D1 receptor and dynorphin mRNA within

Table 4. Confidence intervals for IC50’s in KOR agonist dose response study.

Group 95% Confidence interval

Male non-pair bonded 4.761818 to 13.906848

Male pair bonded �1.2093417 to 4.4570177

Female non-pair bonded 0.73751 to 18.11349

Female pair bonded �0.73394 to 10.70294

DOI: 10.7554/eLife.15325.021

Resendez et al. eLife 2016;5:e15325. DOI: 10.7554/eLife.15325 15 of 35

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.15325.021Table%204.Confidence%20intervals%20for%20IC50&x2019;s%20in%20KOR%20agonist%20dose%20response%20study.%2010.7554/eLife.15325.021Group95%%20Confidence%20intervalMale%20non-pair%20bonded4.761818%20to%2013.906848Male%20pair%20bonded&x2212;1.2093417%20to%204.4570177Female%20non-pair%20bonded0.73751%20to%2018.11349Female%20pair%20bonded&x2212;0.73394%20to%2010.70294
http://dx.doi.org/10.7554/eLife.15325


the ventral striatum as well as enhanced DA transmission within the NAc shell. However, in relation

to the dynorphin/KOR system, only males showed an overall reduction in membrane expression of

KORs as well as dramatic reductions in DA transmission in response to a KOR agonist. Given that

these systems are known to directly interact with each other (Engber et al., 1992; Carlezon et al.,

Figure 8. Pair bonding alters DA and dynorphin/KOR systems within the ventral striatum. (a) Non-pair bonded

prairie voles readily approach novel conspecifics and have lower levels of stimulated DA release as well as Drd1

and Pdyn mRNA expression within the ventral striatum. (b) Following the establishment of a pair bond, male and

female prairie voles aggressively reject novel conspecifics and the ventral striatum undergoes a dramatic

reorganization. Specifically, pair bonding enhances DA release within the NAc shell as well as up-regulates Drd1

as well as Pdyn within the ventral striatum of both males and females. Pair bonded males also show an additional

decrease in KOR binding within the NAc shell.

DOI: 10.7554/eLife.15325.022
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Figure 9. Interactions between D1-like and KORs mediate pair bond maintenance. (a) Experimental Design. (b,c) Histological location of injection sites

in (b) males and (c) females. (d) Compared to control pair-bonded males that received site-specific infusions of aCSF prior to resident-intruder testing (n

= 6), males that received site-specific infusions of a D1-like receptor antagonist into the NAc shell showed attenuated levels of selective aggression as

well as (e) increased attack latency toward intruders (n = 6). However, aggression levels and attack latencies were returned to normal when the

antagonist for the D1-like receptor was administered in combination with a KOR agonist (n = 7) suggesting that D1-mediated aggression occurs

through downstream activation of KORs. This interaction was confirmed by the ability of the KOR antagonist to attenuate selective aggression even

when it was administered in combination with the D1-like receptor agonist (n = 7). (f,g) Similar to males, blockade of D1-like receptors within the NAc

shell of paired females (n = 6) attenuated selective aggression compared to aCSF controls (n = 6). Aggression frequency was returned to the level of

paired female controls when the D1-like receptor antagonist was administered in combination with a KOR agonist (n = 7). Finally, the attenuation of

attack frequency and the increase in attack latency mediated by a KOR antagonist was maintained even in the presence a D1-like receptor agonist (n =

6). Summary data are presented as mean ± SEM. *p<0.05, **p<0.005.
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1998; Ebner et al., 2010; Chartoff et al., 2016) and that activation of both D1-like receptors

(Aragona et al., 2006) and KORs are required for the expression of selective aggression

(Resendez et al., 2012), we next determined if these systems interact in vivo to regulate pair bond

maintenance.

D1-like and KORs interact to mediate selective aggression
Previous studies have shown that the DA and the dynorphin/KOR systems function in sequence of

each other, with stimulation of D1-like receptor promoting downstream activation of the dynorphin/

KOR system (Gerfen et al., 1990; Carlezon et al., 1998). We therefore tested the hypothesis that

D1-like receptor regulation of selection aggression is upstream of its regulation by KORs. Similar to

the anatomical characterization studies described above, prairie voles were paired with an opposite

sex conspecific for 2 weeks to allow sufficient time for a pair bond to be established. At the end of

the cohabitation period, site-specific behavioral pharmacology was utilized in combination with resi-

dent intruder testing to examine the sequential nature of interactions between activation of D1-like

receptors and KORs on the expression of selective aggression (Figure 9a). More specifically, if KOR

activation is indeed downstream of D1-like receptor activation than activation of KORs despite phar-

macological blockade of D1-like receptors should still result in the expression of selective aggres-

sion. Conversely, pharmacological manipulations that would result in a reduction in KOR activation,

such as administration of a D1-like antagonist in the absence of a KOR agonist or administration of a

KOR antagonist in the presence of a D1-like receptor agonist, should attenuate the expression of

selective aggression.

Compared to control subjects receiving site specific administration of aCSF, pharmacological

manipulation of NAc shell D1-like and KORs (Figure 9b,c) significantly altered the expression of

selective aggression in both pair bonded males (Attack frequency: one-way ANOVA, F(3,25) = 5.55,

p=0.005, Figure 9d; Attack latency: one-way ANOVA, F(3,25) = 5.54, p=0.005, Figure 9e) and

females (Attack frequency: one-way ANOVA, F(3,23) = 4.59, p=0.01, Figure 9f). However, attenuation

of selective aggression was dependent on the combination of agonists and antagonists adminis-

tered. As expected, pharmacological blockade of NAc shell D1-like receptors significantly attenu-

ated measures of selective aggression in both pair bonded males (Attack frequency: planned

contrast, post hoc: p=0.03, Attack latency: planned contrast, post hoc: p=0.04) and females (Attack

frequency: planned contrast, post hoc: p=0.01). However, blockade of NAc D1-like receptors did

not significantly attenuate attack latency in females (one-way ANOVA, F(3,23) = 4.77, p=0.01,

p=0.47). Thus, activation of NAc shell D1-like receptors is required for the expression of selective

aggression in both sexes, possibly due to D1-like receptor mediated activation of the dynorphin/

KOR system.

To determine if KOR regulation of selective aggression is indeed downstream of the DA system,

we co-administered a KOR agonist along with a D1-like receptor antagonist, resulting in KORs to be

activated despite the inhibition of D1-like receptors. Activation of KORs in the presence of the D1-

antagonist restored selective aggression as mean attack frequency (Male: planned contrast, post

hoc: p=0.92; Female: planned contrast, post hoc: p=0.62) and attack latency (Male: planned con-

trast, post hoc: p=0.54; Female: planned contrast, post hoc: p=1.00) did not differ from paired con-

trols in either sex, suggesting that D1-like receptors mediate selective aggression through

downstream activation of the dynorphin/KOR system. In contrast, D1-like receptor activation in the

presence of KOR inactivation was insufficient to restore measures of selective aggression to levels of

paired controls (Male attack frequency: planned contrast, post hoc: p=0.006; Female attack fre-

quency: planned contrast, post hoc: p=0.008; Male attack latency: planned contrast, post hoc:

p=0.001; Female attack latency; planned contrast, post hoc: p=0.005; Figure 9d–g), further suggest-

ing that KOR mediation of selective aggression is downstream of D1-like receptors. Finally, these

manipulations specifically altered aversively motivated behaviors as there were no differences in

affiliative (Male: one-way ANOVA, F(3,25) = 1.95, p=0.15; Female: one-way ANOVA, F(3,23) = 1.58,

p=0.23) or locomotor behavior (Male: one-way ANOVA, F(3,23) = 0.75, p=0.54; Female: one-way

ANOVA, F(3,23) = 0.69, p=0.57) (data not shown). Together, these data support the hypothesized

mechanism that DA activation of D1-like receptors promotes downstream release of dynorphin to

subsequently activate KORs within the NAc shell and generate selective aggression.

In addition to regulation of selective aggression, D1-like receptors within the NAc shell have also

been shown to mediate the protective effects of pair bonding against drug reward (Liu et al., 2011).
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Given the identification that D1-like receptor regulation over pair bonding occurs through down-

stream activation of the dynorphin/KOR system, it is also possible that the protective effects of pair

bonding are mediated though activation of this aversive processing system. We therefore next

determined if activation of the dynorphin/KOR system is required for pair bonding to exert protec-

tive effects against the rewarding properties of amphetamine (AMPH).

Amphetamine-induced neuroplasticity mimics that of pair bonding
Positive social relationships, such as the formation of strong social ties, modify the brain in such a

manner that results in an attenuation of the rewarding properties of drugs of abuse (Creswell et al.,

2015). Thus, identifying overlapping neural systems that mediate both social bonding and drug

reward processing may have positive therapeutic value in the treatment of addiction. We therefore

first examined the impact of a rewarding regimen of AMPH (3 AMPH injections at 1-mg/kg across 3

days) on KOR binding in non-pair bonded prairie voles. This dose of AMPH was chosen because it is

well established to elicit a preference for AMPH in the conditioned place preference task in both

male and female prairie voles (Aragona et al., 2007; Liu et al., 2010; 2011).

Compared to control males (3 injections of saline across 3 days), male subjects exposed to a

rewarding regimen of AMPH showed significantly altered patterns of striatal KOR expression (two-

way ANOVA, F(1,78) = 15.97, p=0.0001, Figure 10a,b). Moreover, the pattern of AMPH induced

alterations in KOR expression within the striatum of males was similar to the pattern induced by pair

bonding, with AMPH exposure significantly reducing KOR expression within the dorso-medial (Bon-

ferroni’s post hoc test, p=0.02) and ventral NAc shell (Bonferroni’s post hoc test, p=0.01)

c

ba

d

Saline Amphetamine

M
e

a
n

 D
e

n
s
it
y

0

20

40

60

80
Non-pair bonded male

Non-pair bonded female

Saline Amphetamine

Saline Amphetamine

M
e

a
n

 D
e

n
s
it
y

0

20

40

60

80

N
Ac 

co
re

N
Ac 

sh
el
l

N
Ac 

sh
el
l

N
Ac 

sh
el
l

D
M

S
D
LS

D
or

so
-m

ed
ia
l 

Ven
tra

l 

La
te

ra
l 

Saline Amphetamine

*
*

N
Ac 

co
re

N
Ac 

sh
el
l

N
Ac 

sh
el
l

N
Ac 

sh
el
l

D
M

S
D
LS

D
or

so
-m

ed
ia
l 

Ven
tra

l 

La
te

ra
l 

Figure 10. Amphetamine decreases KOR binding within the striatum of males. (a,b) AMPH decreased KOR

binding within the dorso-medial and ventral NAc shell of non-pair bonded males (n = 7–8/group). (c,d) Similar to

pair bonding, AMPH did not impact striatal KOR binding in females (n = 7–8/group). Summary data are presented

as mean ± SEM. *p<0.05.
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The following figure supplement is available for figure 10:

Figure supplement 1. Sex differences in prairie vole KOR binding density following amphetamine exposure.
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(Figure 10b, Table 5). In contrast, AMPH exposure had no significant impact on striatal KOR expres-

sion in females (two-way ANOVA, F(1,108) = 0.44, p=0.51, Figure 10c,d). Moreover, when the pattern

of KOR expression binding was directly compared between males and females (two-way ANOVA,

F(1,96) = 39.80, p=0.0001), control subjects significantly differed in KOR binding density with control

males having significantly higher levels in the dorso-medial (Bonferroni’s post hoc test, p=0.03) and

ventral NAc shell (p=0.0002) (Figure 10—figure supplement 1). However, as with the experience of

pair bonding, AMPH exposure also eliminated these sex differences (two-way ANOVA, F(1,90) = 1.89,

p=0.17) (Figure 10—figure supplement 1). Given that AMPH altered male, but not female, striatal

KOR binding density, we focused next set of experiments on male subjects.

Social reward impairs AMPH-induced place conditioning
Pair bonding exerts protective effects against AMPH reward (Liu et al., 2011); however, the estab-

lishment of a pair bond is associated with a complex suite of socially related experiences, such as

exposure to a novel social stimulus, extended periods of cohabitation, the development of social

familiarity, copulation, and impregnation and it is not well understood how these individual compo-

nents contribute to the neural protective effects that pair bonding exerts against drug reward

(Resendez et al., 2013). To this end, we conducted a detailed analysis of pair bond associated social

experiences that may contribute to the social buffering of drug reward. Specifically, male subjects

were randomly assigned to one of the following treatment groups: social familiarity (i.e., same-sex

sibling housed), extended cohabitation with a novel social stimulus without mating (i.e., 2 weeks

cohabitation with a novel male or ovariectomized female), or extended cohabitation with a repro-

ductive partner (2 weeks cohabitation with an intact female). Given that not all gonadally intact

male-female pairs achieved pregnancy, males housed with an intact female were further categorized

by the reproductive status of the female partner at the completion of testing (i.e., no indication of

pregnancy, sub-optimally pregnant, or optimally pregnant). Exposing males to these different social

experiences as well as categorizing mating pairs by their reproductive status allowed us to deter-

mine the influence of each social condition on the protective effects of pair bonding (Figure 11a).

Following exposure to one of the above described social conditions, males underwent condi-

tioned place preference procedures to identify the specific aspects of male pair bonding that con-

tribute to the attenuation of AMPH reward. A separate group of same-sex sibling housed males was

conditioned with saline only and the duration of time spent in the AMPH paired chamber during the

post-test session was compared to this treatment group. Social experiences that do not result in the

establishment of a pair bond failed to protect against AMPH reward (one-way ANOVA, F(4,69) =

0.67, p=0.0001) as male subjects paired with a same-sex sibling (Tukey’s post hoc test, p<0.0001),

novel male (p=0.004), or OVX female (p=0.008) formed significant preferences for the AMPH paired

chamber (Figure 11a). In contrast, males housed under conditions that promote pair bonding did

not form a preference for the AMPH paired chamber (p=0.14). Moreover, when these males were

further classified by the pair’s pregnancy status, only males from pregnant pairs exhibited protection

against AMPH reward as males from both optimally (p>0.99) and sub-optimally pregnant pairs

(p=0.94) did not form a preference for the AMPH paired chamber, while males from non-pregnant

pairs formed significant preferences (p=0.006) (Figure 11a inset). Together, these data indicate that

the establishment of a fully developed pair bond, and not the other associated social experiences,

mediates social buffering of drug reward.

To further explore the influence of pair bonding on drug reward, we examined the relationship

between pair fecundity and preference for the drug-paired chamber. While males from both sub-

Table 5. Non-significant statistics for comparisons of KOR binding density in saline versus

amphetamine treated males.

Striatal sub-region Bonferonni’s post hoc test

Dorso-medial striatum p>0.99

Dorso-lateral striatum p>0.99

NAc core p>0.99

Dorso-lateral striatum p>0.99

DOI: 10.7554/eLife.15325.026
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optimally and optimally pregnant pairs showed some degree of protection against AMPH reward,

males from optimally pregnant pairs showed the strongest relationship between fecundity and the

attenuation of AMPH reward. Specifically, in males from optimally pregnant pairs, the rewarding

properties of AMPH were negatively correlated with the pregnancy status of the female (linear

regression, R2= 0.403, F(1,9) = 6.079, p=0.036, Figure 11b). However, a similar relationship was not

found in males from sub-optimally pregnant pairs (linear regression, R2= 0.025, F(1,6) = 0.155,

p=0.708, Figure 11c). Thus, the reproductive status of the pair influences pair bond induced protec-

tion against AMPH reward.

NAc shell KORs attenuate the rewarding properties of amphetamine in
pair bonded males
We next determined if pair bond induced alterations in the male prairie vole KOR system contribute

to neural protective effects against AMPH reward. Similar to above, males were paired with either a
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Figure 11. Neural protection against drug reward is specific to pair bonding in males. (a) Male prairie voles were housed with a familiar cage mate, a

novel male, an ovariectomized (OVX) female, or an intact female for two weeks prior to AMPH conditioning. Compared to saline treated males, all

groups except males housed with an intact female formed a preference for the AMPH paired chamber (n = 6–33/group). To determine if pregnancy

status influenced the rewarding properties of AMPH, males housed with an intact female were further classified by the pairs pregnancy status (inset).

Only males paired with a female that became pregnant (suboptimally (SP) or optimally (OP)) during the 2-week pairing period were protected against

the rewarding properties of amphetamine as males paired with females that were not pregnant (NP) formed a preference for the AMPH paired

chamber. (b) The establishment of an optimal pregnancy strongly influenced the rewarding properties of AMPH as there was a negative correlation

between the duration of time spent in the AMPH paired chamber and the gestational stage of the female for optimally pregnant pairs (n = 11). (c) In

contrast, there was no relationship between pregnancy stage and AMPH preference for sub-optimally pregnant pairs (n = 8). Summary data are

presented as mean ± SEM. *p<0.05, **p<0.005, ***p<0.0005.
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male partner (non-paired) or an intact female (paired) for 2 weeks prior to AMPH conditioning. On

day one of conditioning, males in both groups received either peripheral administration of saline or

a KOR antagonist. AMPH preference varied by housing conditioning as well as treatment (two-way
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Figure 12. NAc shell KORs mediate the protective effects of pair bonding. (a) Peripheral administration of nor-BNI

restored the rewarding properties of AMPH for paired males (n = 6–14/group). (b) Histological location of injection

sites. (c) Site-specific blockade of NAc shell KORs was sufficient to alleviate pair bond induced attenuation of

AMPH reward (n = 4–7/group). Summary data are presented as mean ± SEM. **p<0.005.
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ANOVA, F(1, 28) = 8.13, p=0.008). Specifically, compared to non-paired males that received saline

injections prior to AMPH conditioning, paired males treated with saline spent significantly less time

in the AMPH paired chamber (Bonferroni’s post hoc test, p=0.004, Figure 12a). In contrast, global

blockade of KORs in pair bonded males restored the rewarding properties of AMPH as paired males

that received peripheral injections of nor-BNI prior to AMPH conditioning did not differ from non-

paired males in the duration of time spent in the AMPH paired chamber (p>0.99, Figure 12a).

Together, these data indicate that the protective effects of pair bonding are in part mediated by

KORs.

To determine if KOR buffering of AMPH reward is mediated within the NAc shell, we next exam-

ined if blockade of KORs specifically within this region was sufficient to restore AMPH preference in

pair bonded males (Figure 12b). A two-way ANOVA indicated that AMPH preference varied by

housing condition and treatment (F(1, 29) = 8.33, p = 0.007, Figure 12c). Compared to non-paired

males, paired males that received site-specific injections of aCSF into the NAc prior to AMPH condi-

tioning spent significantly less time in the AMPH paired chamber (Bonferroni’s post hoc test,

p = 0.003, Figure 12c). However, pair bonded males that were administered nor-BNI prior to AMPH

conditioning did not differ from non-paired males that also received site-specific administration of

nor-BNI in the duration of time spent in the AMPH paired chamber (p>0.99, Figure 12c). Together,

these data demonstrate that KORs in the NAc shell are indeed involved in pair bond induced neuro-

protection against drug reward as activation of these receptors is required for pair bond induced

attenuation of drug reward.

Discussion
Prior to forming a pair bond, sexually naı̈ve prairie voles perceive novel social stimuli as rewarding.

However, following extended cohabitation with a breeding partner and the full development of a

pair bond, prairie voles aggressively reject novel conspecifics. In the present study, we critically

extend current understanding of the neural mechanisms that mediate the transition to the pair

bonded state by identifying neuroplasticity within the NAc shell that regulates the maintenance of

monogamous bonds. Specifically, compared to non-paired subjects, pair bonded males and females

have enhanced DA release potential within the NAc as well as an up-regulation of D1 receptor and

dynorphin mRNA within this region. The functional significance of this pair bond induced plasticity

was demonstrated with site-specific pharmacology as blockade of either one of these receptor sys-

tems attenuates the expression of pair bond maintenance. Moreover, while both sexes show some

degree of mate guarding behavior, paired males are generally more aggressive than paired females

and in the present study we provide the first mechanistic data to explain sex differences in the

expression of selective aggression. Compared to females, pair bonded males exhibited additional

neuroplasticity within the NAc as well as fecundity dependent alterations in DA transmission includ-

ing: a positive correlation between DA release and pair fecundity, decreased binding of KORs, and

enhanced KOR regulation over DA transmission. These more robust alterations within the NAc of

males may partially explain why males show more intense mate guarding than females as well as the

dependence of male mate guarding on fecundity. Finally, we also show that AMPH exposure alters

KOR binding density within a sex-specific manner and that neuroplasticity within the dynorphin/KOR

system of pair bonded males is critical for pair bond induced attenuation of drug reward. Together,

the data presented in the present study reveal novel mechanisms underlying the maintenance of

monogamous pair bonds as well as the neural protective effects of social bonding against drug

reward.

Neural and behavioral plasticity associated with pair bonding
A combination of comparative anatomical approaches and behavioral pharmacological studies has

been utilized to identify neural mechanisms that underlie pair bond formation and maintenance in

the socially monogamous prairie vole (Carter et al., 1997; Bales et al., 2007; Young et al., 2008;

Aragona et al., 2009). In regards to pair bond formation, the initial stages of bond development

are mediated in part by D2-like, oxytocin, vassporessin, and mu-opioid receptors systems located

within reward processing regions of the brain such as the striatum and the ventral pallidum

(Insel et al., 1998; Young et al., 2008; Resendez and Aragona, 2013). Interesting, following social

conditioning procedures that promote the establishment of a pair bond, we did not identify
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alterations in the expression of mRNA for genes encoding D2-like, oxytocin, vasopressin, or mu-opi-

oid receptors (Carter et al., 1997; Johnson and Young, 2015). One possible explanation of why a

lack of an alteration in receptor systems associated with partner preference behavior was not

observed in the present study is that a preference for social proximity is required in both the bonded

and non-bonded state, while the emergence of an aversion towards social novelty is specific to the

establishment of a pair bond and requires alterations in both social and motivational circuitry

(Resendez and Aragona, 2013).

In contrast to neural systems that regulate pair bond formation, motivational and valence process-

ing systems associated with pair bond maintenance undergo a dramatic overhaul during the transi-

tion from the naive to the pair bonded state. An important function of this alteration is to render

pair bonded voles hyper aggressive toward novel conspecifics in order to achieve robust mate

guarding (Resendez and Aragona, 2013). As such, it is not surprising that neuroplasticity associated

with pair bond development occurs within systems that mediate the expression of social behaviors

associated with pair bond maintenance, DA/D1 and dynorphin/KOR systems and that these altera-

tions occur specifically within the NAc shell, the striatal sub-region where these receptor systems act

to mediate pair bond maintenance. Moreover, behavioral pharmacological data make evident the

functional significance of these alterations by demonstrating that activation of KORs within the NAc

shell of prairie voles mediates the assignment of negative social valence onto novel conspecifics,

while blockade of either D1-like or KORs abolishes selective aggression. Together, these data sup-

port the working hypothesis that neuroplasticity within the NAc shell stabilizes established pair

bonds by enhancing the perceived negative valence of novel social stimuli and the promotion of

robust mate guarding.

Sex-specific alterations in motivational systems and behavior
In species where monogamous breeding systems have evolved, males will often engage in mate

guarding behavior to prevent access of competitor males to the female partner, increasing the males

opportunity for selective breeding as well as reducing the likelihood of uncertain paternity

(Trivers and Campbell, 1972; Kleiman, 1977). While this breeding strategy is adaptive for some

species, mate guarding behavior is intensely energetically costly given that a great deal of time must

be spent maintaining proximity to the female and a high level of energy expended engaging in risky

agonistic social encounters with competitor males (Parker, 1974; Grafen and Ridley, 1983;

Getz et al., 1990; Crews and Moore, 1986). As a result, males can usually only successfully guard

one female at a time (Brotherton et al., 2003) and, to maximize reproductive fitness, it is adaptive

for mate guarding behavior to emerge only after the establishment of a reproductively successful

pair bond (Resendez et al., 2012). For the socially monogamous prairie vole, an indication of pair

fecundity is indeed required for males to transition to the pair bonded state (Curtis, 2010;

Resendez et al., 2012); yet the neural mechanisms that underlie this sex difference have remained

elusive. In the present study, we provided the first proximal mechanistic data to explain how fecun-

dity induced sex differences in selective aggression might arise.

Consistent with the theory that mate guarding in monogamous males serves to maximize repro-

ductive fitness (Trivers and Campbell, 1972), the present study demonstrates that the extent to

which DA transmission was enhanced within the NAc shell of paired males was positively correlated

with both pair fecundity as well as measures of selective aggression. Moreover, significant enhance-

ments in NAc shell DA transmission only occurred in males from optimally pregnant pairs and males

from these pairs also showed significantly higher levels of selective aggression. Thus, neuroplastic

changes that are associated with the expression of selective aggression only occur in paired males

when an adaptive benefit in defending the female partner has been established (i.e., when the bene-

fit of defending the female outweighs the risk associated with aggressive conflict as well as preda-

tion risks that may occur when searching for a new mate).

In contrast to paired males, a relationship between alterations in DA transmission and pair fecun-

dity were not identified in paired females, which is consistent with both field (Rose and Gaines,

1976) and laboratory (Resendez et al., 2012) studies that have yet to identify a relationship

between fecundity and mate guarding behavior in female prairie voles. One possible explanation for

a lack of influence for fecundity on both neural and behavioral changes associated with pair bonding

in females is a difference between males and females in the ultimate mechanisms that underlie the

decision to bond with a partner. For instance, given that the reproductive status of the male is
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constant, whereas females require extended periods of contact with a male for sexual receptivity to

be induced (Carter et al., 1987), it may be more beneficial for a female to increase the likelihood of

reproductive success by remaining in contact with a male partner than to risk predation by searching

for a new mate. Moreover, unlike males, female mammals do not risk exerting unnecessary energy

raising offspring that are not their own if their male partner engages in extra-pair copulations

(Trivers and Campbell, 1972). Thus, the risk to reward ratio for engaging in agonistic social encoun-

ters may not be as great for females and may also partially explain why females tend to be less

aggressive overall than males. Together, sex differences in the adaptive value of mate guarding as

well as sex differences in temporal and environmental factors that regulate reproductive activation

between males and females may partially underlie known sex differences in the intensity of selective

aggression as well as behavioral and neural neuroplasticity associated with the transition to the

bonded state.

Sub-region specific alterations in male NAc shell KOR binding
Increasing evidence suggests that anatomical and functional heterogeneity occurs within the shell

region of the NAc (Peciña and Berridge, 2005; Resendez and Aragona, 2013; Richard et al.,

2013). More recently, it has been demonstrated that heterogeneity in the valence coding properties

of the dynorphin/KOR system is anatomically segregated within the NAc shell (Castro and Berridge,

2014; Al-Hasani et al., 2015). Specifically, the release of dynorphin into the dorso-medial region of

NAc shell and the subsequent activation of KOR induces positive hedonics (Castro and Berridge,

2014; Al-Hasani et al., 2015), while the release of dynorphin into the ventral NAc shell induces aver-

sion (Al-Hasani et al., 2015). Interestingly, pair bonding altered the binding density of male NAc

shell KORs in a sub-region specific manner that maps onto the topographical organizational of the

aversive coding properties of the dynorphin/KOR system. Pair bonding down-regulated KOR bind-

ing within the ventral region of the NAc shell, while leaving KOR binding within the dorso-medial

and lateral regions of the NAc shell unaltered. Thus, pair bonding altered KOR binding only in the

sub-region of the NAc shell where activation of these receptors acts to encode aversion.

One possible mechanism underlying the sub-region specific influence of the dynorphin/KOR sys-

tem on valence coding may be due to anatomical heterogeneity in the downstream projection tar-

gets of the dorso-medial and ventral regions of the NAc shell. In general, downstream projection

targets from the afferents of cell bodies originating in the dorsomedial region of the NAc shell are

more widespread than those originating from cell bodies located in the ventral region of the NAc

shell. For cell bodies located in the dorso-medial NAc shell, the highest density of afferents are

located in the medial region of the ventral pallidum (VP), the lateral preoptic area, and the lateral

hypothalamus with sparser fiber labeling occurring within the lateral septum, the bed nucleus of the

stria terminalis, the anterior hypothalamus, the medial preoptic area, and rostral portion of the ven-

tral tegmental area (Thompson and Swanson, 2010; Zahm et al., 2013). In contrast, the ventral

region of the NAc shell varies from the dorso-medial region of the NAc shell in both the number and

specific brain regions it projects to. While the dorso-medial NAc shell sends dense projections to

the medial region of the VP (Thompson and Swanson, 2010), the ventral region of the NAc shell

projects specifically to the lateral region of the VP and also sends sparser projections to the lateral

preoptic area and rostral-caudal extent of the ventral tegmental area (Zahm et al., 2013). It is there-

fore possible that although the release of dynorphin and the subsequent activation of NAc shell

KORs has the potential to reduce dopaminergic and glutamatergic transmission throughout the

entire dorsal-ventral axis of the NAc shell (Hjelmstad and Fields, 2001; Britt and McGehee, 2008),

the sum of the influence on downstream neuronal networks has the potential to vary greatly

between the two sub-regions.

One notable downstream projection target that is unique to the ventral NAc shell is the lateral

region of the VP. The lateral VP is an important brain region for reward processing (Cromwell and

Berridge, 1993) and is innervated by NAc shell medium spiny neurons that primarily express Gi-cou-

pled D2-like DA receptors (Gerfen and Young, 1988). Thus, KOR-mediated reductions in DA within

the ventral NAc shell would increase the activity of GABAeregic medium spiny neurons that project

to the lateral VP, resulting in the inhibition of this region (Bonci and Carlezon, 2005). Interestingly,

reduced activity has been observed directly within the VP following exposure to aversive stimuli

(Itoga et al., 2016) as well as an increase in activity within brain nuclei that receive input specifically

from GABAergic neurons located within the lateral region of VP. Of specific interest is the relief of
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inhibition of the periventricular nucleus of the thalamus (PVT), a brain nucleus that is downstream of

the VP and has been indicated in aversive processing (Yashoshima et al., 2007). In contrast to the

ventral NAc shell, reductions in DA specifically within the dorso-medial region of the NAc shell

would cause a decrease in the activity of the PVT through inhibition of glutamatergic afferents from

the LH that project to the PVT (Thompson and Swanson, 2010; Zahm et al., 2013). Thus, the ven-

tral NAc shell fi lateral VP fi PVT circuit may be one mechanism in which site-specific modulation of

NAc shell KORs contributes to aversive coding, while the dorso-medial NAc shell fi LH fi PVT circuit

may contribute to positive valence coding by NAc KORs. However, more work is necessary to deter-

mine how topographical organization of NAc shell contributes to opposing modulation of valence

coding and the subsequent divergent responses on motivated behavioral states, such as approach

versus avoidance behaviors.

Interactions between D1-like and KORs mediate pair bond maintenance
Complex behaviors often require interactions between multiple neural systems. Indeed, studies of

pair bond formation show that partner preferences require concurrent activation of D2-like and OT

receptors within the NAc shell (Liu and Wang, 2003) as well as V1a receptor activation within the VP

(Lim et al., 2004). These previous studies argued that peptide systems are necessary for social rec-

ognition, while DA transmission is important for reward processing (Young and Wang, 2004;

Johnson and Young, 2015). In the present study, we expand our current understanding of neural

mechanisms involved in the regulation of pair bond behavior by demonstrating that interactions

between opioid peptides, such as the dynorphin/KOR system, and DA transmission within the NAc

may act to couple valence processing systems within motivational circuitry. Consistent with the the-

ory that interactions between these systems mediate pair bond induced transitions in the valence

encoding of novel social stimuli, previous studies of drug reward have demonstrated that interac-

tions between DA/D1 and dynorphin/KOR systems mediate the propensity for previously rewarding

stimuli to be processed as aversive. Specifically, stimulation of D1-like receptors phosphorylates

cAMP response element binding protein (CREB) to induce the expression and release of dynorphin

(Carlezon et al., 1998), resulting in the valence encoding of a psychostimulant to be reversed from

rewarding to aversive (Pliakas et al., 2001). Together, these data suggest that alterations in the

activity and, subsequently, interactions between DA and dynorphin/KOR systems play a critical role

in experience mediated plasticity in reward processing.

While it is known that activity within the dynorphin/KOR system plays a critical role in reward

processing, the mechanism in which this system modulates the encoding of reward is not well under-

stood. One hypothesized mechanism in which the dynorphin/KOR is thought to negatively impact

motivation and reward processing is through its ability to robustly decrease dopaminergic transmis-

sion within the NAc (Shippenberg et al., 1996; Carlezon and Thomas, 2009). Interestingly, interac-

tions between these systems were augmented following the establishment of a pair bond in male,

but not female, prairie voles. Given that paired bonded males are the more aggressive sex and that

paired males also incur greater reproductive costs if their mate engages in extra-pair copulations

(Resendez et al., 2012), it is possible that paired males show a greater aversion to social novelty

and this enhanced aversion may be mediated by augmented coupling between DA and dynorphin/

KORs within the NAc. While more work is necessary to determine the exact mechanism in which

NAc KORs mediate the expression of sex differences in selective aggression, the present study

nonetheless provides an interesting example of how the dynorphin/KOR system modulates reward

and motivation to promote ethologically relevant behavioral adaptation.

Neuroprotective effects of pair bonding on drug reward
Addiction is a debilitating disorder that is characterized in part by chronic relapse, and, while phar-

macological treatments continue to be sought for the treatment of this disorder, many have been

ineffective in sustaining drug abstinence (Fattore and Diana, 2016). Interestingly, there is compel-

ling evidence that a preventative approach, focused on neural adaptations resulting from the forma-

tion and maintenance of positive social relationships, may offer positive benefits to psychological

well being (Feldman, 2015). For example, in drug-addicted humans, the presence of positive social

support reduces the propensity for relapse (Creswell et al., 2015), suggesting that positive social

experience, such as bonding, may wire the brain in a manner that reduces future drug seeking
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behavior (Young et al., 2011). Yet, despite the demonstrated positive benefit for social bonding on

mental health, the neural mechanisms underlying the relationship between social bonding and drug

taking have not been extensively studied. The scarcity of studies examining this relationship is likely

related to a lack of animal models that exhibit both the propensity for social bonding and drug tak-

ing behavior.

The socially monogamous prairie vole offers an excellent animal model in which to study the rela-

tionship between drug and social reward because, unlike most mammals, they form selective social

attachments to their mating partner. Importantly, as demonstrated in the present study, the estab-

lishment of a pair bond, but not mere social exposure or mating, is required for social bonding to

exert protective effects against AMPH reward. The specificity of the establishment of a social bond

to the neural protection against drug reward is likely related to the fact that the establishment of a

pair bond alters the brain in a manner in which other social experiences do not (Liu et al., 2011;

Smith and Wang, 2014). Indeed, it has previously been demonstrated that activation of neural sys-

tems that mediate pair bond maintenance (NAc D1-like receptors), but not those that mediate pair

bond formation (NAc D2-like receptors), are required for pair bond induced protection against drug

reward (Liu et al., 2011). Here, we extended these previous findings by demonstrating that, for

male prairie voles, activation of NAc shell KORs is required for pair bond induced attenuation of

AMPH reward. Given that drugs that act at the dynorphin/KOR system are currently under intense

investigation as potential therapeutics for the treatment of addiction (Carlezon and Miczek, 2010)

and that pair bonding induces neural plasticity within this system to result in an attenuation in drug

reward, there may be considerable therapeutic value in understanding the neural mechanisms in

which social experiences alter reward circuitry to buffer against drug reward. Finally, data presented

in the present study also provide support for the consideration of socially related cognitive therapies

when developing future treatment regimens for the treatment of addiction.

Future considerations for how interactions between the D1-like
dopamine receptor system and the dynorphin/KOR system mediate
pair bond maintenance
Following the establishment of a pair bond, male prairie voles show an enhancement in KOR-agonist

induced decreases in stimulated DA within the NAc shell, despite having an overall reduction in KOR

binding density within this region. Given the presumption that a reduction in receptor number would

also reduce the efficacy of an agonist to produce the measured physiological response, these find-

ings appear to contradict one another. However, G protein-coupled receptors (GPCRS), including

KORs, are dynamic proteins that can adopt multiple conformational states, resulting in variability in

ligand binding affinity as well as efficacy of the receptor to activate distinct downstream signaling

cascades (Bruchas and Chavkin, 2010). For example, G proteins have been shown to pre-couple

with receptors (Nobles et al., 2005) and this coupling can lead to conformational changes in the

extracellular portion of the receptor that enhance affinity of the ligand for the receptor (Yan et al.,

2008). Moreover, the percent of G protein receptor coupling can vary as a function of receptor den-

sity (Yan et al., 2008). Thus, under certain physiological conditions, it is possible for receptor cou-

pling efficiencies to be enhanced, resulting in a fewer number of receptors to be required for an

agonist to produce the maximal biological response (Kenakin, 2002).

With binding of the agonist, changes in conformational state of the receptor can also be induced,

to increase affinity of the G protein to the receptor. In addition, GPCRS can engage a diverse array

of signaling pathways in a manner that is dependent on the ligand (White et al., 2014), cellular

milieu (Yan et al., 2008), as well as lipid membrane properties (Nygaard et al., 2013). Thus, there

are wide variety of dynamic receptor states that can influence functional interactions between the

ligand and the receptor as well as the receptor and its G protein. Future research is therefore neces-

sary to determine if, in addition to pair bond induced changes in striatal KOR expression patterns, if

KOR mediated signaling properties also vary as a function of social state as well as the potential for

such alterations to influence DA transmission dynamics. Finally, given that KORs are found on the

terminal regions of multiple inputs to the NAc (glutamatergic, GABAergic, and dopaminergic)

(Meshul and McGinty, 2000; Svingos et al., 2001; Hjelmstad and Fields, 2003) more work will

also be necessary to determine if KOR binding is globally decreased within the NAc of pair bonded

males or if this decrease is restricted to a specific sub-population of inputs.
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Conclusion
In the present study, we provide extensive detail of the neural mechanism involved in the mainte-

nance of enduring social bonds. Specifically, we show that neural systems involved in aversive

valence processing, such as the dynoprhin/KOR system (Bals-Kubik et al., 1989; Land et al., 2008;

Chartoff et al., 2009; Koob and Volkow, 2010; Schindler et al., 2012; Al-Hasani et al., 2015), as

well as those involved in the orchestration of socially motivated behavioral states, such as the D1-like

receptor system, (Balfour et al., 2004; Champagne et al., 2004; Aragona et al., 2009; Hull, 2011;

Chevallier et al., 2012; Gunaydin et al., 2014) interact within the NAc shell to mediate selective

aggression and the maintenance of monogamous bonds. Importantly, understanding the neurobiol-

ogy of social bonding has important translational implications for psychiatric disorders of a social

nature as well as motivational/affective disorders (Feldman, 2015). Thus, further investigation of

social reward processing in the prairie vole model has the potential to reveal how social bonding

alters motivational circuitry in a manner that buffers against psychopathology.

Materials and methods

Subjects
Subjects were adult prairie voles bred in a laboratory colony at the University of Michigan. Subjects

were weaned at 21 days of age and initially housed in same-sex sibling pairs. Animals were housed

in a 14 hr light/10 hr dark cycle (lights on at 6 AM and off at 8 PM) and all experiments occurred dur-

ing the light phase of the animals cycle. Food and water was available ad libitum (Resendez et al.,

2012; Resendez and Aragona, 2013).

Housing conditions
For experiments that required pair bonded prairie voles, adult subjects were paired with an opposite

sex partner for 14 days in a large cage that subsequently became the pair’s ‘home cage’ cage. This

cohabitation time allows for nest sharing, mating, and impregnation (Aragona et al., 2006). Preg-

nancy was confirmed by extracting embryos from pregnant females and subsequently categorizing

pregnancy status by average neonatal weight of the embryos (Curtis, 2010; Resendez et al., 2012)

Stereotactic surgery
Subjects were anesthetized with a mixture of ketamine (90 mg/kg) and xylazine (10 mg/kg) adminis-

tered at 0.1% of total body weight. Stereotactic surgery was subsequently performed to implant a

26-gauge bilateral guide cannula (Plastics One, Roanoke, VA) into the NAc shell (+1.7 mm A/P; ±

1 mm M/L; -4.5 mm D/V) (Resendez et al., 2012). Cannulas were secured to the skull with stainless

steel screws and dental cement. Following surgery, males were given 0.1 mL ketoprofen and

returned to their home cage to recover with either their cage mate or mating partner 3 days prior

topartner preference, selective aggression, or conditioned place preference testing.

Partner preference
Three days prior to behavioral testing, a guide cannula was implanted above the NAc shell

(Resendez and Aragona, 2013). Immediately prior to pairing with an opposite-sex conspecific, male

subjects received site-specific injections of either aCSF or 1 mg U50,488 (KOR agonist)

(Muschamp et al., 2011). Following injections, subjects cohabitated with a female partner for 1 hr

and were next placed in a 3-chambered partner preference apparatus with their partner restricted

to one chamber and a novel opposite-sex individual (stranger) restricted to the opposite chamber.

Test subjects were free to move throughout the apparatus. The 3 hr test was recorded and later

scored by an experimentally blind observer for the duration of time spent in side-by-side contact

with either the partner or stranger.

Resident-intruder tests
1 hr prior to resident-intruder testing, subjects received site-specific infusions of one of the following

treatment groups: aCSF, 10 ng SCH 23,390 (D1 receptor antagonist), 10 ng SCH 23,390 and 1 mg

U50,488, or 0.4 ng SKF 38,393 (D1 receptor agonist) and 500 mg norBNI (KOR antagonist)
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(Aragona et al., 2006; Resendez et al., 2012). 1 hr after drug infusion, the subject was placed in its

home cage (in isolation) and its behavior was recorded for 10 min, allowing time for acclimation to

the testing environment and the assessment of locomotor activity. Locomotor activity was assessed

by counting the number of cage crosses made during the 10-min habituation period. Next, a same-

sex stimulus animal was introduced to the subject’s home cage and behavioral interactions were

recorded for 10 min. Resident-intruder tests were scored for the frequency of aggressive behaviors

(offensive rears, lunges, bites, and chase frequency). The latency to engage in agonistic behavior

was determined by the first time point in which an aggressive encounter occurred. If an aggressive

encounter was not observed during the testing period, an attack latency of 10 min was applied.

Affiliative behavior was assessed by quantifying the sum of the duration of time that the test subject

spent investigating and in side-by-side contact with the intruder.

Conditioned place preference
A non-biased conditioned place preference assay was used to assess the rewarding properties of 1

mg/kg of amphetamine, a dose that has been shown to reliably elicit a preference for the drug

paired compartment in this species (Aragona et al., 2007; Liu et al., 2010). A pre-test was con-

ducted on day 1 of conditioning to determine if the test subject had a bias for either side of the

chamber. Test subjects that showed a robust preference for either chamber (greater than 67% of the

pre-test) were excluded from the study. On the following 3 days, subjects were administered saline

in the preferred chamber and 1 mg/kg AMPH the non-preferred chamber and placed in the chamber

for 40 min. The order of injections was counterbalanced between subjects and treatments were

administered 6 hr apart. On day five of testing, a preference for the amphetamine paired chamber

was determined by placing the subject in the apparatus and allowing it to freely roam either com-

partment for 30 min.

To determine how social conditioning impacts AMPH reward, male subjects were placed in one

of several housing conditions: sibling housed, housed with a novel male, house with an OVX female,

or housed with an intact female. To determine if alterations in KOR binding contribute to the protec-

tive effects of pair bonding against drug reward, non-paired or paired subjects received either

peripheral administration of saline or 50 mg/kg nor-BNI dissolved in sterile saline on day 1 of condi-

tioning. To determine if the impact of KORs on drug reward processing was specific to the NAc

shell, test subjects received site-specific microinfusions of either aCSF or 500 mg nor-BNI into the

NAc shell on day 1 of conditioning. These doses were chosen because they have previously been

shown to reduce selective aggression in male prairie voles without altering locomotor activity

(Resendez et al., 2012). For males paired with intact females, female partners were checked for suc-

cessful pregnancy after male subjects completed the post-test on day 5 of testing (Curtis, 2010;

Resendez et al., 2012).

Measuring mRNA by reverse transcriptase PCR
Tissue punches from the dorsal and ventral striatum were processed for mRNA quantification as pre-

viously described (Day et al., 2013). Total RNA was extracted using the RNeasy Mini kit (Qiagen)

following the manufacturer’s instructions. mRNA was reverse transcribed using the iScript RT-PCR kit

(Bio-Rad). Specific intron-spanning primers were used to amplify cDNA regions for transcripts of

interest (Drd1, Drd2, Drd3, Pdyn, Penk, Oprk1, Oprm1, Oxtr, and Avpr1a). Nadh was used as an

internal control for normalization using the DDCt method within the VS. Oprm1 was used as the con-

trol within the DS because mRNA for this gene did not differ between groups and Nadh mRNA lev-

els were found to be affected by pregnancy in females.

Receptor autoradiography
KOR autoradiography was used to quantify changes in receptor density across the striatum as a func-

tion of pair bonding and AMPH administration. To examine the effect of pair bonding on KOR bind-

ing density, subjects were either paired with a novel female for two weeks or remained housed with

a same-sex sibling. To determine the effects of AMPH exposure on KOR binding density, striatal sli-

ces from male prairie voles receiving either control injections of saline or injections of 1 mg/kg

AMPH for three days were also processed for KOR autoradiography. Follow the completion of either

social or drug exposure, subjects were sacrificed via rapid decapitation 24 hrs following the last day
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of pairing (for the pair bonding manipulation) or the final injection (for the AMPH manipulation).

Brains were removed, immediately frozen on powdered dry ice, and stored at �80ºC until section-

ing. A cryostat was used to section the brain into a 1:4 series at 20 mM. Sections were directly

mounted onto glass slides and stored at �80˚C until time of assay.

Autoradiography for KORs was conducted with 3H U-69,593 radioligands (Perkin Elmer, USA)

(Resendez et al., 2012). On the day of the assay, slides were thawed at room temperature (RT) until

dry and fixed in 0.1% paraformaldehyde (pH 7.4; 2 min). Slides were then washed in 50 mM Tris

buffer (pH 7.4; 10 min; 2 washes) and incubated for 1 hr in tracer buffer containing 50 mM Tris

buffer, 10 mM MgCl2, 0.1% bovine serum albumin, and 1 nM 3H U-69,593 for visualization of KOR

binding. Next, slides were washed in 50 mM Tris containing 0.2% MgCl2 for 5 min at 4˚C (4 washes)

then for 30 min at RT (1 wash). Slides were briefly dipped in nanopure H2O, allowed to dry at RT

and then exposed to BAS Imaging Plates (GE Life Sciences, Piscataway, NJ) for 2 weeks. All plates

were scanned on the BAS-5000 plate reader using BAS-5000 Image Reader software (Version 1.8).

Binding densities were determined with region of interest analysis using ImageJ software.

FSCV
Following rapid, live decapitation, brains were quickly extracted, immediately submerged in cold,

pre-oxygenated high sucrose aCSF consisting of 180 mM sucrose, 30 mM NaCl, 4.5 mM KCl, 1 mM

MgCl2, 26 mM NaHCO3, 1.2 NaH2PO4, and 10 mM D-Glucose in deionized H2O (pH 7.4), and sec-

tioned into coronal slices (400 mm) containing the DS, the NAc core, and the NAc shell. Following

sectioning, slices were transferred to RT aCSF buffer solution consisting of 176.13 mM ascorbate,

180.16 mM glucose, 84.01 mM sodium bicarbonate, 58.44 mM NaCl, 156 mM NaH2PO4, 74.56 mM

KCl, 147.01 mM CaCl2, and 203.30 mM MgCl2 in deionized H2O (pH 7.4) and incubated for 1 hr. A

buffer solution of this same composition (minus ascorbate) was used to perfuse the slices during

recordings (1 ml/min). Both buffer solutions were continuously bubbled with 5% CO2 and 95%

(Maina and Mathews, 2010).

FSCV was conducted with recording electrodes fabricated from 1.2 mm pulled glass capillary

tubes, with the carbon fiber cut to approximately 150 mm from the capillary glass seal. Using Tarheel

CV (University of North Carolina, Chapel Hill) software written in LABVIEW (National Instruments,

Austin, TX), a triangular ramp sweeping from �0.4 V to +1.2 V versus a Ag/AgCl reference was

applied to the carbon-fiber electrode at a rate of 10 Hz (Robinson et al., 2002). The characteristic

oxidation current, seen at +0.6 V during the upward ramp, and reduction current, at -0.2 V during

the downward ramp, of DA was identified using a background-subtracted cyclic voltammogram

(Aragona et al., 2009). The peak currents for DA were converted to concentration by calibrating

each electrode to a known concentration of DA (3 mM) (Sinkala et al., 2012; Vander Weele et al.,

2014).

To compare differences in striatal DA release properties between non-paired and pair bonded

voles, FSCV was conducted in striatal slice preparations (Singer et al., 2016). DA release was

evoked by a 1 or 20-pulse stimulation (350 mA) delivered in 5-min increments at 20 Hz with a bipolar

stimulating electrode placed on the surface of the striatal slice approximately 150 mm from the

recording electrode (Zhang et al., 2009). Each recording was 15 s in duration and DA release was

evoked at 5 s. A total of 3 recordings at each pulse were made within each region and peak DA

release was averaged for each subject. Slice stimulations occurred at regular 5-min intervals and

readings were only recorded for experimental purposes once DA release was stabilized

(Calipari et al., 2012).

KOR dose response in the NAc shell
FSCV was used to assess changes in DA/KOR interactions following the establishment of a pair

bond. The KOR agonist BRL 5237 hydrochloride was bath applied to striatal slice preparations and

DA release was measured (Britt and McGehee, 2008). Increasing doses (0.001, 0.01, 0.03, 0.1, 0.3,

1, 3, 10, 20 30 mM) of BRL 52,537 hydrochloride were added every 30-min to the slice’s aCSF reser-

voir, perfused at 1 mL/min. Dose response curves were generated using non-linear regression with

the bottom set equal to 0 (Maina and Mathews, 2010).
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Statistics
Based upon our previous behavioral pharmacology experiments in voles, 5–8 subjects are needed

per group to achieve a p-value of <0.05 with 80% power. Therefore, each group contains at least 6–

8 subjects. Consistent with established standards in the literature, we used at least 6 subjects for

mRNA and receptor autoradiography experiments and at least 3 subjects for slice FSCV experi-

ments, with multiple samples taken per slice. For most experiments, comparisons were made

between biological replicates, i.e., comparisons between treatment groups receiving a pharmaco-

logical manipulation or between different social conditions. For FSCV experiments, both biological

and technical replicates, i.e., repeated measurements from the same coronal slice under identical

preparations were also made. To determine whether the data were normally distributed and equiva-

lent in variance, we examined boxplots for each group. In cases where boxplots revealed that the

data were not normally distributed or there was a lack of equal variance among groups, nonpara-

metric tests were used. Statistical significance was assessed with either a t-test, one-way ANOVA, or

two-way ANOVA. An alpha level was set at p�0.05 for all statistical analysis. All analysis were per-

formed in SPSS version 21 for Windows.
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