3,020 research outputs found

    OT 060420: A Seemingly Optical Transient Recorded by All-Sky Cameras

    Get PDF
    We report on a ~5th magnitude flash detected for approximately 10 minutes by two CONCAM all-sky cameras located in Cerro Pachon - Chile and La Palma - Spain. A third all-sky camera, located in Cerro Paranal - Chile did not detect the flash, and therefore the authors of this paper suggest that the flash was a series of cosmic-ray hits, meteors, or satellite glints. Another proposed hypothesis is that the flash was an astronomical transient with variable luminosity. In this paper we discuss bright optical transient detection using fish-eye all-sky monitors, analyze the apparently false-positive optical transient, and propose possible causes to false optical transient detection in all-sky cameras.Comment: 7 figures, 3 tables, accepted PAS

    A Fuzzy Logic Based Algorithm for Finding Astronomical Objects in Wide-Angle Frames

    Full text link
    Accurate automatic identification of astronomical objects in an imperfect world of non-linear wide-angle optics, imperfect optics, inaccurately pointed telescopes, and defect-ridden cameras is not always a trivial first step. In the past few years, this problem has been exacerbated by the rise of digital imaging, providing vast digital streams of astronomical images and data. In the modern age of increasing bandwidth, human identifications are many times impracticably slow. In order to perform an automatic computer-based analysis of astronomical frames, a quick and accurate identification of astronomical objects is required. Such identification must follow a rigorous transformation from topocentric celestial coordinates into image coordinates on a CCD frame. This paper presents a fuzzy logic based algorithm that estimates needed coordinate transformations in a practical setting. Using a training set of reference stars, the algorithm statically builds a fuzzy logic model. At runtime, the algorithm uses this model to associate stellar objects visible in the frames to known-catalogued objects, and generates files that contain photometry information of objects visible in the frame. Use of this algorithm facilitates real-time monitoring of stars and bright transients, allowing identifications and alerts to be issued more reliably. The algorithm is being implemented by the Night Sky Live all-sky monitoring global network and has shown itself significantly more reliable than the previously used non-fuzzy logic algorithm.Comment: Accepted for publication in PAS

    Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters

    Full text link
    It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of Algebraic Renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.Comment: Final version, typoes fixed. Revtex, 48 page

    Frequency Limits on Naked-Eye Optical Transients Lasting from Minutes to Years

    Full text link
    How often do bright optical transients occur on the sky but go unreported? To constrain the bright end of the astronomical transient function, a systematic search for transients that become bright enough to be noticed by the unaided eye was conducted using the all-sky monitors of the Night Sky Live network. Two fisheye continuous cameras (CONCAMs) operating over three years created a data base that was searched for transients that appeared in time-contiguous CCD frames. Although a single candidate transient was found (Nemiroff and Shamir 2006), the lack of more transients is used here to deduce upper limits to the general frequency of bright transients. To be detected, a transient must have increased by over three visual magnitudes to become brighter than visual magnitude 5.5 on the time scale of minutes to years. It is concluded that, on the average, fewer than 0.0040 (tdur/60t_{dur} / 60 seconds) transients with duration tdurt_{dur} between minutes and hours, occur anywhere on the sky at any one time. For transients on the order of months to years, fewer than 160 (tdur/1t_{dur} / 1 year) occur, while for transients on the order of years to millennia, fewer than 50 (tdur/1t_{dur}/1 year)2^2 occur.Comment: Accepted for publication in A

    Group Discounts Compatible with Buyer Privacy

    Full text link
    We show how group discounts can be offered without forcing buyers to surrender their anonymity, as long as buyers can use their own computing devices (e.g. smartphone, tablet or computer) to perform a purchase. Specifically, we present a protocol for privacy-preserving group discounts. The protocol allows a group of buyers to prove how many they are without disclosing their identities. Coupled with an anonymous payment system, this makes group discounts compatible with buyer privacy (that is, buyer anonymity).Comment: Presented at 9th DPM International Workshop on Data Privacy Management (DPM 2014, Sep. 10,2014). To appear in workshop proceedings, LNCS, Springe

    Before sailing on a domain-wall sea

    Full text link
    We discuss the very different roles of the valence-quark and the sea-quark residual masses (mresvm_{res}^v and mressm_{res}^s) in dynamical domain-wall fermions simulations. Focusing on matrix elements of the effective weak hamiltonian containing a power divergence, we find that mresvm_{res}^v can be a source of a much bigger systematic error. To keep all systematic errors due to residual masses at the 1% level, we estimate that one needs amress103a m_{res}^s \le 10^{-3} and amresv105a m_{res}^v \le 10^{-5}, at a lattice spacing a0.1a\sim 0.1 fm. The practical implications are that (1) optimal use of computer resources calls for a mixed scheme with different domain-wall fermion actions for the valence and sea quarks; (2) better domain-wall fermion actions are needed for both the sea and the valence sectors.Comment: latex, 25 pages. Improved discussion in appendix, including correction of some technical mistakes; ref. adde

    Polarised Raman and Infrared Spectra of Single Crystals of P-Chlorobromobenzene

    Get PDF

    A Protocol for Generating Random Elements with their Probabilities

    Full text link
    We give an AM protocol that allows the verifier to sample elements x from a probability distribution P, which is held by the prover. If the prover is honest, the verifier outputs (x, P(x)) with probability close to P(x). In case the prover is dishonest, one may hope for the following guarantee: if the verifier outputs (x, p), then the probability that the verifier outputs x is close to p. Simple examples show that this cannot be achieved. Instead, we show that the following weaker condition holds (in a well defined sense) on average: If (x, p) is output, then p is an upper bound on the probability that x is output. Our protocol yields a new transformation to turn interactive proofs where the verifier uses private random coins into proofs with public coins. The verifier has better running time compared to the well-known Goldwasser-Sipser transformation (STOC, 1986). For constant-round protocols, we only lose an arbitrarily small constant in soundness and completeness, while our public-coin verifier calls the private-coin verifier only once

    Towards accurate imputation of quantitative genetic interactions

    Get PDF
    Recent technological breakthroughs have enabled high-throughput quantitative measurements of hundreds of thousands of genetic interactions among hundreds of genes in Saccharomyces cerevisiae. However, these assays often fail to measure the genetic interactions among up to 40% of the studied gene pairs. Here we present a novel method, which combines genetic interaction data together with diverse genomic data, to quantitatively impute these missing interactions. We also present data on almost 190,000 novel interactions.Tel Aviv University. Edmond J, Safra Bioinformatics CenterIsrael Science Foundation (grant no. 802/08)Raymond and Beverley Sackler Foundatio
    corecore