1,198 research outputs found

    Treatment of Mitochondrial Cytopathies

    Get PDF
    Pls see PDF

    Diagnosis of Organic Acidemia

    Get PDF
    Organic acid occur as physiologic intermediates in variety of intracellular metabolic pathways, such as catabolism of aminoacid, mitochondrial β oxidation of fatty acids, tricarboxilic acid cycle, and cholestrol and fatty acid biosynthesis. The classical organic aciduria represent the pursuit of abnormalities of aminoacid degradation beyond deamination Their diagnostic hallmark is an accumulation of characteristic organic acids.The clinical features result from toxicity of the accumulating methabolites.Treatment involved 1. protein restriction 2. supplementation of aminoacids with unimpaired metabolism as well as trace elements and 3. specific measures for detoxification if indicated. Diagnostic tests consist of CBC, FBS, Bun, Cr, uric organic acid, TG, Cholestrol Ca, P, ALP, VBG, Na, K, Cl, U/A(PH, SG, Ketone), Ammonia, lactate, pyrovate, Ketone body CPK, Aldolase, SGOT, SGPT, BIL, PT, PTT, Plasma aminoacid HPLC, Homocysteine, Urine aminoacid and carbohydrate chromatography, Acyl carnitine profile, urine organic acids and for next steps tissue specimen and enzyme activity and gene study.clinical chemical indices of organid aciduria is Metabolic acidosis, Increased anion gap, Hyperglycemia and hypoglycemia, Ketosis and Ketonuria, Lactic acidosis, Hyperammonemia, Hyperuricemia, Hypertriglyceridemia, increase of transaminase Granulocytopenia, thrombocytopenia and Anemia. Acylcarnitine profile and urine organic acids are two for important tests for differentiation of types oforganic academia

    Diagnosis in Lysosomal Disorders

    Get PDF
    How to Cite this Article: Shakiba M. Diagnosis in Lysosomal Disorders. Iran J Child Neurol Autumn 2012; 6:4 (suppl. 1):15- 16.Pls see PDF.  

    A peptide array for bovine-specific Kinome analysis : comparative analysis of bovine monocytes activated by TLR4 and TLR9 agonists

    Get PDF
    As phosphorylation represents the pivotal mechanism for regulation of biological processes, kinases belong to one of the most biologically significant enzyme classes. The development of analytical techniques for characterization of kinase activity, in particular at a global scale, is a central priority for proteomic and cell biology researchers. In order to facilitate global analysis of cellular phosphorylation, a new paradigm of microarray technology which focuses on analysis of total cellular kinase activity, kinome, has emerged in the past few years. As the specificity of many kinases is dictated primarily by recognition of residues immediately surrounding the site of phosphorylation a logical methodology is to employ peptides representing these immediate sequences as experimental substrates. Microarray chips carrying hundreds of such substrate targets have been developed for human kinome analysis, however, lack of similar tools for species outside research mainstream has limited kinome analysis in these species. Based on sequence alignment of orthologous phosphoproteins from mammalian species, conservation of amino acid identity is reported to be 80 %. Accordingly, the potential exists to utilize phosphorylation sequence databases to extrapolate phosphorylation sites in other species based on their genomic sequence information. Peptides representing these proposed phosphorylation sites can then be utilized as substrates to quantify the activity of the corresponding kinase. Based on these principles, a bovine microarray of 300 unique peptide targets was constructed. The bovine phosphorylation targets were selected to represent a spectrum of cellular events but with focus on processes related to innate immunity. Initial application and validation of the bovine peptide arrays was carried out for kinome analysis of bovine blood monocytes stimulated with either lipopolysaccharide (LPS) or CpG-ODNs; ligands for Toll-like receptors (TLR) 4 and 9, respectively. The arrays confirmed activation of the known TLR signaling pathway as well as identifying receptor-specific phosphorylation events. Phosphorylation events not previously attributed to TLR activation were also identified and validated by independent bioassays. This investigation offers insight into the complexity of TLR signaling and more importantly verifies the potential to use bioinformatics approaches to create tools for species-specific kinome analysis based on genomic information
    corecore