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Abstract 

 

Modeling and Simulation of Fluid Flow in Naturally and Hydraulically 

Fractured Reservoirs Using Embedded Discrete Fracture Model 

(EDFM) 

 

Mahmood Shakiba, M.S.E 

The University of Texas at Austin, 2014 

 

Supervisor:  Kamy Sepehrnoori 

 

Modeling and simulation of fluid flow in fractured subsurface systems has been 

steadily a popular topic in petroleum industry. The huge potential hydrocarbon reserve in 

naturally and hydraulically fractured reservoirs has been a major stimulant for research 

developments in this field. Although several models have found limited applications to 

study fractured reservoirs, still comprehensive models are required to be applied for more 

complicated problems. A recently developed Embedded Discrete Fracture Model 

(EDFM) incorporates the advantages of two of the well-known models, the dual 

continuum and the discrete fracture models, to investigate more complex fracture 

geometries. In EDFM, each fracture is embedded inside the matrix grid and is discretized 

by the cell boundaries. This approach introduces a robust methodology to represent the 

fracture planes explicitly in the computational domain. As part of this research, the 

EDFM was implemented in two of The University of Texas in-house reservoir 

simulators, UTCOMP and UTGEL, to provide the capability of modeling and simulation 



 vii 

of a broad range of reservoir engineering applications in naturally and hydraulically 

fractured reservoirs. To validate this work, comparisons were made against a fine-grid 

simulation and a semi-analytical solution. Also, the simulation results were compared to 

the results obtained from EDFM implementation in the GPAS reservoir simulator for 

more complicated fracture geometries. In all of the examples, good agreements were 

observed. To further illustrate the applications and capabilities of UTCOMP- and 

UTGEL-EDFM, several case studies were presented. First, synthetic reservoir models 

with networks of fractures were generated to study the impact of well placement. It was 

shown that considering the configuration of the background fracture networks can 

significantly improve well placement design and also can maximize oil recovery. The 

capillary imbibition effect was then investigated for the same reservoir models to display 

its effect on incremental oil recovery. Furthermore, UTCOMP-EDFM was applied for 

hydraulic fracturing design where the performances of a simple and a complex fracture 

networks were evaluated in reservoirs with different rock matrix permeabilities. 

Accordingly, the simulation outcomes indicated that a complex network is an ideal 

design for a very low permeability reservoir, while a simple network results in a higher 

recovery for the reservoir with moderate permeability. Finally, UTGEL-EDFM was 

employed to optimize a conformance control process. Several injection timings and 

several gel concentrations were specified for water flooding processes and their impact 

on oil recovery was evaluated henceforth.      
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Chapter 1: Introduction 

 

 Modeling and simulation of fluid flow in both natural and induced fracture 

systems has improved progressively over the past sixty years. The huge potential 

hydrocarbon reserve and the significance of fractures in the recovery process have pushed 

the research forward on this topic since then. Based on a market analysis by 

Schlumberger in 20071, almost sixty percent of total oil and forty percent of total gas 

reserves reside in fractured carbonate reservoirs. Such reserves have made the naturally 

fractured reservoirs to one of the primary targets for further development and investment. 

Several recovery mechanisms have been studied thoroughly in petroleum industry to 

enhance oil and gas productions out of such reservoirs. However, one intrinsic 

characteristic, i.e. the existence of natural fractures and the corresponding networks, has 

triggered several challenges and problems associated with the modeling and simulation of 

the recovery processes in fractured reservoirs. The effectiveness of a recovery mechanism 

in a real field study is strongly tied to the characteristics of the fracture networks. 

Fracture domain exhibits a huge contrast in properties compared to the background rock 

matrix. Low porosity-high permeability fractures are coupled to high porosity-low 

permeability matrix rock. Although the hydrocarbon initially resides in rock matrix pore 

volume, the fluid flow is governed mostly by fractures. In reservoir simulation, although 

natural fractures are accounted as subscale phenomena compared to typical 

computational cells, their contribution to fluid transport is significant. Hence, to better 

understand the underlying principles of fluid flow in naturally fractured reservoirs, a 

multi-scale multi-variable outlook is required. 

                                                 
1 “Carbonate Reservoirs: Meeting unique challenges to maximize recovery”, Schlumberger, 2007 
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Figure 1.1: Microseismic monitoring of a hydraulic fracturing job (Rahimi Zeynal et al. 

2014). The green lines are the horizontal wells and the pink dots are 

microseismic events. Each event represents a rock failure. The fracture 

network is constructed based on the microseismic map. 

Besides natural fractures, induced fracturing has received a great deal of attention 

over the past few decades. This technology has transformed the previously untapped 

shale and tight formations to one of the most reliable sources of energy and to the fastest 

growing area in the petroleum industry. Based on this technology, to increase the 

productivity of wells drilled in low permeability reservoirs, the near wellbore region is 

stimulated using high pressure fluid injection, creating systems of simple to complex 

fracture networks. In such situations, as studied by several researchers, the well 

performance and the behavior of whole reservoir are substantially affected by the 

developed fracture networks inside the rock. Although numerous geomechanics research 

studies are devoted to predict the final shape of fracture networks, the accurate 
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characterization of such systems still remains a challenge. Figure 1.1 depicts a hydraulic 

fracturing job monitored by microseismic mapping. Microseismic is a new technology in 

which the rock failure is recorded by the emitted signals and the data is used to estimate 

the shape and the extent of fracture networks. As observed in Figure 1.1, the stimulation 

job has created a complex fracture network in which the intensity and the connectivity of 

the fractures vary significantly. For such cases, in addition to properties of single 

fractures, the connectivity of the network is a major parameter as well. Thus, to measure 

the effectiveness of such a stimulation job, a comprehensive modeling tool is required to 

capture the complexity of the fracture networks. 

Although several models have found limited applications to study flow in fracture 

systems in the petroleum industry, still there is a need for new models to be applied for 

more practical purposes. One of the first proposed classes of models is based on the Dual 

Porosity and Dual Permeability (DPDP) concept. In this class of models, to represent the 

effect of small-scale densely distributed fractures, an equivalent structured domain is 

coupled to the rock matrix grid and a new set of properties is assigned to that. The main 

advantage of the dual continuum approach is the simplicity of the model. Instead of 

dealing with highly heterogeneous fracture systems, two coupled domains are considered, 

matrix and fracture domains. However, depending on the type of problem, the accuracy 

of this approach is questionable. Since an upscaling approach is taken into account by the 

dual continuum models, an accurate characterization of individual fractures becomes 

impossible. Thus, for sparse distributions of channels or fractures, these models lose 

applicability and fail to represent the effect of individual fractures appropriately. To look 

into more details and capture the behavior of fractures accurately, Discrete Fracture 

Models (DFMs) were developed. In this class of models, unstructured gridding is 

performed to construct fracture networks with different shapes and configurations, thus 
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providing a powerful tool to study a broad range of problems. Each fracture in the DFM 

approach is a 2D interface and is generated by polyhedral cells of matrix gridblocks. 

Although more realistic compared to the dual continuum models, the DFMs are still 

computationally expensive for field-scale simulations. To perfectly reveal the geometry 

and the configuration of fractures, the size of unstructured cells decreases as the latter 

locate closer to fractures. In addition, since the majority of commercial reservoir 

simulators work with structured grids, the implementation of DFMs in such simulators is 

challenging.  

Over the past few years, several methods have been proposed to incorporate the 

advantages of the dual continuum and the discrete fracture models. The objective has 

been first to employ the DFMs in characterization and analysis of fracture networks and 

then to apply the outcome in the form of input for further modeling and simulation using 

the dual continuum approaches. In fact, the DFMs are used for modeling the fractures 

interactions, while the rock matrix domain remains in the structured format. A recently 

developed model of this kind is the Embedded Discrete Fracture Model (EDFM) 

developed by Li and Lee (2008) and Moinfar et al. (2012, 2014). In EDFM, each fracture 

is embedded inside the matrix grid and is discretized by the cell boundaries. The 

connection between matrix and fracture cells is defined based on the geometry of 

fractures. The rock matrix composed of structured cubical cells, similar to dual 

continuum approach, while the fracture is discretized into unstructured polygons.  

As part of this research, UTCOMP and UTGEL, The University of Texas in-

house reservoir simulators, were augmented with the capability of modeling and 

simulation of fluid flow in complex fracture systems to investigate several recovery 

mechanisms in fractured reservoirs and to study the efficiency of hydraulic fracturing in 

unconventional resources. To do so, the EDFM approach was implemented in these 
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reservoir simulators using a non-neighboring connection approach. Since EDFM is 

compatible with the structured grid, the implementation of the model and the required 

modifications were straightforward. To handle the connections between matrix and 

fracture cells, extra directions were defined for the corresponding control-volumes. 

Consequently, the mass balance and pressure equations were modified to account for 

matrix-fracture and fracture-fracture fluid transfers.  

In Chapter 2, some of the proposed models in the literature for studying fractured 

reservoirs are reviewed and the recent improvements in this field are discussed. A brief 

description of the UTCOMP and UTGEL reservoir simulators is then presented in 

Chapter 3 where the governing equations are reviewed. Next in Chapter 4, the EDFM 

approach description and the methodology for implementing this model into the reservoir 

simulators are described. In Chapter 5, UTCOMP-EDFM and UTGEL-EDFM are 

compared against a fine-grid and more complex simulation problems as well as one semi-

analytical solution to verify the implementation work. To show some of the applications 

of UTCOMP-EDFM and UTGEL-EDFM to study fractured reservoirs, several simulation 

case studies are conducted in Chapter 6. Finally, in Chapter 7, summary and conclusions 

of this research study are presented and a few recommendations for future works are 

offered.  
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Chapter 2: Literature Review 

 

Numerical modeling and simulation of flow in fractured reservoirs has a long 

history in the petroleum industry. For more than 50 years, researchers have been studying 

the behavior of fractured reservoirs to capture the physics of fluid flow in such systems. 

Due to significant contribution of fractured reservoirs in daily production of hydrocarbon, 

the research in this field has moved progressively toward more practical approaches. The 

erstwhile models have been further modified and extended in order to predict the 

performance of these reservoirs more accurately. In general, a fracture is defined as a 

discontinuity in the formation rock originated from loss of cohesion between matrix 

grains (Van Golf-Racht (1982)). Such discontinuities alter the flow characteristics of the 

host rock and turn the formation rock into a complex system to be analyzed. In terms of 

geologic life, almost every formation has withstood severe stresses and has undergone 

tectonic movements, while the rock material itself was not solid enough (Saidi (1987)). 

Hence, it is not unusual to think that almost all reservoirs are somehow fractured 

regardless of whether or not the fractures are active and effective on fluid flow (Aguilera 

(1995)).  To better understand the effect of fractures, several approaches have been 

proposed, most of which are grounded on the basis of two classes of models, the dual 

porosity (or dual continuum) and the discrete fracture models. Each class of models has 

developed to answer some of the challenges associated with modeling and simulation of 

fractured reservoirs. However, due to high degree of complexity of such systems, still 

more improvements are required in the available models in order to study the behavior of 

fractured reservoirs more accurately. In this chapter, a literature review of dual 

continuum and discrete fracture models is presented. The recently developed Embedded 
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Discrete Fracture Model (EDFM) is then introduced in Chapter 4, which is the main 

focus of this research.  

 

2.1 DUAL POROSITY MODELS 

In the dual porosity approach, a naturally fractured reservoir model is represented 

by two collocated domains, the fracture domain and the matrix domain.  Thus, in every 

spatial point, two sets of parameters are defined, one for matrix and one for fracture, and 

the corresponding fluid flow equations are coupled by a term called the Transfer 

Function. Usually the matrix domain represents the hydrocarbon storage and is regarded 

as discrete blocks surrounded by the interconnected fracture system. On the other hand, 

the fracture domain is considered as the conductive path with small, if not zero, storage 

capacity. Since the fractures are fed by the matrix blocks, the latter are handled as source 

or sink terms for the fracture elements. The original assumptions in the model 

development are homogenous and isotropic matrix gridblocks, uniform fracture networks 

aligned with major coordinates, and semi-steady state flow in matrix gridblocks. These 

idealizations are suitable for a dense fractured reservoir with highly interconnected 

networks. Figure 2.1 illustrates the well-known schematic of the dual porosity concept. 

The matrix domain is usually composed of regularly-shaped blocks such as slabs, cubes, 

or parallelepipeds. If a communication is defined between matrix gridblocks as well, then 

the model is called Dual Porosity-Dual Permeability (DPDP) or simply Dual Continuum 

model.  

Barrenblatt et al. (1960), for the first time, introduced the mathematical concept 

of dual porosity model for studying fluid flow in fissured rocks. They considered two 

overlapped medium with different properties in which coupled mass conservation 
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equations were solved analytically. Later, Warren and Root (1963) proposed a similar 

mathematical model to describe the behavior of a naturally fractured reservoir. In their 

model, they considered two collocated domains, one as the main storage for the fluid 

(primary porosity) and the other as the pathway for the fluid flow in porous medium 

(secondary porosity), while the two domains are coupled with a transfer function. 

Accordingly, two parameters were defined that govern the behavior of this idealized 

model:   as the storage capacity of the fracture system and   as the measure of flow 

capacity of the matrix domain. Next, they utilized these two parameters to analyze the 

pressure transient of fractured reservoirs. Odeh (1965), however, showed mathematically 

that under the same type of assumptions, similar to Warren and Root’s model, field 

measured pressure build-up and drawdown data of fractured reservoirs look similar to 

those of a homogenous reservoir in some specific cases, and it is difficult to distinguish 

between them. 

 

 

 

Figure 2.1: Idealization made by dual porosity model for a naturally fractured reservoir 

(Warren and Root (1963)). 
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Later, Kazemi (1969) used a cylindrical reservoir with horizontal fractures to 

verify the Warren and Root’s model in the case that unsteady state regime is considered 

for single-phase flow in the matrix as well. He showed that their model is valid for the 

cases where the contrast between matrix and fracture flow characteristics is high.  

Kazemi et al. (1976) developed a three-dimensional numerical reservoir simulator 

to study two-phase water-oil displacement in fractured reservoirs. They used the same 

concept of Warren and Root’s model for the two-phase flow. They studied water 

imbibition in fractured reservoirs and investigated its effect on reservoir performance. 

The formulations they used for fracture and matrix domains are given in Eqs. (2.1) and 

(2.2), respectively, where   is relative mobility, P  is pressure,   is density, Z  is depth, 

T  is matrix/fracture transmissibility coefficient, q  is rate,   is porosity, S  is saturation, 

and B  is formation volume factor. Also, the subscripts , ,j m and f denote phase, matrix 

domain, and fracture domain, respectively. 
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The left hand side of Eq. (2.2) is the Transfer Function ( m f  ) which accounts for 

matrix/fracture communication. To calculate relative mobility and matrix/fracture 

transmissibility, they used 
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where rk  is relative permeability,   is viscosity, and bV  is matrix block bulk volume. In 

equation (2.4),   is the shape factor which represents the geometry of matrix gridblocks 

and controls the fluid exchange between matrix and fracture. To calculate shape factor, 

they used the following equation, where xL , yL , and zL  are matrix block dimensions. 

However, Coats (1989) illustrated that including transient flow will result in a shape 

factor twice as large as the one used by Kazemi et al. (1976). 
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Compared to Warren and Root’s model, in addition to studying two-phase flow, Kazemi 

et al.’s simulator was capable of modeling some degree of heterogeneity by considering 

various properties for individual matrix and fracture blocks. However, although gravity 

effect was considered in the 3D domain, its effect was neglected in the transfer function 

definition. Also, the pressure and saturation gradients in matrix block were neglected. 

 As another two-phase reservoir simulator, Rossen (1977) developed a single 

porosity simulator to study naturally fractured reservoirs. To handle the matrix/fracture 

communication, he considered the fluid exchange as source/sink term in mass balance 
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equations for fracture domain, and treated them using a semi-implicit scheme to increase 

the speed and stability of the solution.   

Later, Kazemi et al. (1979) used the numerical simulator developed in their earlier 

work to match experimental results. They used water flooding data in fractured 

cylindrical cores, as well as rectangular blocks, to examine the reliability of their 

simulator. They used capillary pressure end points as the matching parameters.  

De Swaan (1976) developed a mathematical model for unsteady state flow in 

fractured reservoirs. He showed that the pressure response of a fractured reservoir during 

well test is modeled by two linear lines corresponding to early and late times. However, 

this approach does not predict the transition between these two lines. Furthermore, his 

model contains only the fluid and reservoir properties and no shape factor is required in 

his model. 

If the proposed models of the dual porosity concept are closely inspected, it is 

evident that they are mostly constructed on the same core, in which two collocated 

domains with high contrast are coupled by the transfer function. Hence, one approach to 

boost the accuracy of such models would be modification of the transfer function. 

Basically, the transfer function describes the fluid exchange between matrix blocks and 

surrounding fractures. This fluid exchange occurs due to viscous, capillary, and 

gravitational forces. However, based on Eqs. (2.1) to (2.4), the capillary and gravitational 

forces were not considered properly in the definition of the transfer function and only 

viscous forces were included. To resolve this problem, Litvak (1985) added an explicit 

term to the transfer function calculation as presented in Eq. (2.6). In this equation, m fCG   

is the difference between capillary and gravity forces between matrix block and 

surrounding fractures and is presented by Eq. (2.7) where ZL  is the height of the matrix 

block, j mZ   is the height to which the matrix block is immersed in phase j , c mP   is oil-
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water capillary pressure in matrix block, and 
j fS 

 is the saturation of phase j  in the 

fracture. The latter is used as the correction for partially fracture immersion ( ZL  

correction). Also, in their model, they assumed zero capillary pressure in the fracture. 
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 Later, Sonier et al. (1988) computed a dynamic phase height to which the matrix 

block is immersed using normalized saturations with respect to initial and residual 

saturations of oil and water. Also, they used a weighting factor to calculate the upstream 

properties. A comparison between Soiner’s and Litvak’s results is available in Chen 

(1993). Also, as an evaluation of Eq. (2.7), a discussion was presented by Aldejain (1999) 

regarding the fracture saturation term. He expressed that matrix capillary pressure and 

fluid height in matrix block should not be multiplied by the fracture saturation, and thus 

he proposed a modified form of capillary and gravity terms.  

 Another approach to modify the transfer function definition is to apply pseudo 

relative permeability and pseudo capillary pressure curves. The aim is to reduce the three-

dimensional problem to a two-dimensional one by accounting for gravitational effects. 

Thomas et al. (1983) used the following equation to calculate oil-water capillary pressure 

in matrix including the gravity forces (Coats et al. (1971)). Later, some modifications 

were made to this equation by Dean and Lo (1988) and Rossen and Shen (1989). 
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  Although inclusion of the capillary and gravity forces improved the definition of 

the transfer function, still more modifications were required to capture the transient flow 

and the pressure and saturation gradients in matrix blocks. Saidi (1983) proposed that 

subgridding of the matrix block can properly capture the gravity drainage effect. To do 

so, he discretized the matrix domain into radial and vertical subdomains creating a two-

dimensional model. In his model, fracture pressure was determined according to the 

distance to water-oil contact (WOC). However, due to further discretization of matrix 

blocks, this approach increased the computational cost significantly.  

 Pruess and Narasimhan (1985) introduced the concept of Multiple Interacting 

Continua (MINC) based on the assumption that distribution of thermodynamic properties 

(including pressure) in a matrix block depends on the distance from the nearest fracture. 

This allowed a subgridding pattern with nested volume elements to properly represent the 

isopotential surfaces parallel to fractures. According to this concept, Gilman and Kazemi 

(1983) and Gilman (1986) proposed two matrix subgridding approaches, called nested 

blocks and stacked blocks, discretized in horizontal and vertical directions, respectively 

(Figure 2.2). This approach not only decreased the dimension of the problem, but also 

improved the calculation of the gravity effects allowing phase segregation in matrix block 

as well. The MINC method was later applied by Wu and Pruess (1988) to study oil-water 

imbibition process. They observed that accurate results are obtained using the MINC 

method in imbibition process, while the conventional transfer function gave rise to a 

significant error. Similar to other subgridding techniques, due to an increase in the 

number of matrix blocks, more computational time was required; however, since the 

dimension of the problem decreased to a two-dimensional one, simpler equations were to 

be solved.  
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Figure 2.2: Stacked and Nested discretizations used in MINC approach (Gilman (1986)). 

 

 As another major improvement in the dual porosity concept, several authors 

studied the impact of flow in the matrix domain as well as the fracture system, on the 

overall performance of a naturally fractured reservoir (Hill and Thomas (1985), Dean and 

Lo (1988)). Since in addition to porosity, permeability is defined for both domains, this 

type of models is called Dual Porosity-Dual Permeability (DPDP) or Dual Continuum 

models. Dean and Lo (1988) observed that a much higher oil recovery was obtained 

when the matrix block communications were considered. This increase was even more 

significant when vertical permeability in matrix domain was considerable. Since then, 

several comprehensive reservoir simulators have developed based on the dual porosity-

dual permeability approach to study several scenarios in naturally fractured reservoirs 

(Chen (1993), Aldejain (1999), Naimi-Tajdar et al. (2007), and Tarahhom (2008)). 

Although, this modification enabled more accurate simulation of such reservoirs, more 

effort was required for the computational time. 
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2.2 DISCRETE FRACTURE MODELS 

Although dual porosity models substitute a highly complex fracture network with 

a simple structured continuum, they fail to provide accurate results when the behavior of 

individual fractures is of more interest. In a number of fractured reservoirs, the fractures 

do not establish a connected network and thus the continuum assumption is no longer 

valid. Also, when fractures length is comparable to the size of the computational grid, 

upscaling and averaging of the fractures properties alter the realistic representation of the 

network (Long et al. (1982), Long and Witherspoon (1985)). To further eliminate such 

obstacles in studying fractured reservoirs, a new class of models, called the Discrete 

Fracture Model (DFM), was proposed. In DFMs, each fracture is modeled explicitly 

through the application of unstructured gridding. Unstructured cells are utilized in order 

to conform to the exact geometry and location of each fracture. The cells could be 3D 

polyhedral cells, 2D interfaces, or 1D lines. This technique provides the capability to 

consider different fracture geometries. The specification of fractures attributes is made 

either deterministically, by outcrop characterization studies or microseismic monitoring, 

or stochastically.  To solve the fluid flow equations for such systems, mostly finite-

element or finite-volume (control-volume finite-difference) based approaches are used. 

Moreover, since fracture geometry is honored through unstructured gridding, there is no 

need for the transfer function to compute the fluid exchange between matrix and fracture 

cells. However, the main drawback of the DFMs is the computational cost. Due to refined 

unstructured cells adjacent to fractures, the numerical solution of such systems is 

computationally expensive. Moreover, the implementation of these models into 

structured grid conventional reservoir simulators is another challenge. In the following 

sections, a brief literature review of both finite-element- and finite-volume-based discrete 

fracture models is presented. 
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 In an attempt to solve a two-dimensional transient solute transport in a fractured 

porous medium, Noorishad and Mehran (1982) used a finite-element method (FEM) to 

consider fractures as discrete elements. They used two-nodal point elements to represent 

fractures in the model. Later, Baca et al. (1984) used FEM and the superposition concept 

to study flow and transport in a fractured medium for a two-dimensional problem.  

Therrien and Sudicky (1996) used a control-volume finite-element (CVFE) 

approach to study variably-saturated flow and solute transport in a three-dimensional 

model. They included advection, dispersion, molecular diffusion and sorption in their 

model. CVFE is similar to FEM in terms of interpolation functions for dependent 

variables, while it applies a different technique for flux calculations. In CVFE, fluid flux 

between nodes is calculated explicitly and then mass balance equation is solved, while in 

finite-element approach, fluid potentials are computed initially (Fu et al. (2005)).  

 Kim and Deo (2000) employed FEM with standard Galerkin method to solve two-

phase flow in a 2D fractured porous medium. The formulation was fully implicit and was 

solved using the inexact Newton method. They discretized the domain into a set of 

triangular elements of matrix and line elements of fractures. Using their model, they 

studied the effect of matrix absolute permeability, injection rate, and capillary pressure on 

oil recovery. For 3D problems, Juanes et al. (2002) proposed a modified finite-element 

approach to study groundwater flow. Later, Karimi-Fard and Firoozabadi (2003) 

proposed a similar model to Kim and Deo’s, but using IMPES scheme where pressure 

equation is solved implicitly while saturation equation is solved explicitly. They used 1D 

entities for fractures and 2D triangles for the matrix domain. Figure 2.3 depicts a 

schematic of their discretization method and a case study with six fractures. They 

performed a few simulation case studies for water-wet and mixed-wet media and 

concluded that the FEM is more robust compared to finite-difference approach for 
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studying complex fracture configurations.  

Hoteit and Firoozabadi (2005) combined the mixed finite-element and the 

discontinuous Galerkin (DG) methods to solve non-linear flow equations and to 

approximate more accurately interface fluxes in a single-phase fractured media. One 

problem with models developed based on the classical finite-element approach is the 

local mass conservation in highly heterogeneous reservoirs. This issue is observed in the 

case of multiphase flow examples. Although a mixed finite element method can solve this 

problem, it is computationally expensive to use such formulations. 

 

 

(a)                                                                        (b) 

Figure 2.3: (a) Schematic of a discretization used by finite-element method and (b) a case 

study with 6 fractures (Karimi-Fard and Firoozabadi (2003)). 

Karimi-Fard et al. (2004) used a control-volume finite-difference approach with a 

two-point flux approximation to develop a DFM suitable for conventional reservoir 

simulators working by a grid connectivity list. They used lower-dimensional objects to 

represent fractures such as segments and polygons in 2D and 3D problems, respectively. 
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Although this technique eliminates fractures in the grid domain, the thickness of fractures 

is considered in the computational domain for flow-rate calculation. To solve flow 

equations, they considered a node at the center of each element (Figure 2.4) and applied a 

finite-difference scheme.  

Monteagudo and Firoozabadi (2004) developed a two-phase fractured reservoir 

simulator based on the control-volume (CV) approach. The CV approach (Baliga and 

Patankar (1980)) is a finite volume formulation over dual cells of a Delaunay mesh and is 

locally conservative. Also, it performs upstream winding based on flow potentials at 

control-volume boundaries. Monteagudo and Firoozabadi (2004) used their model to 

study capillary and gravity effects on simulation of two-phase immiscible and 

incompressible flow in a 3D problem. Later, Paluszny et al. (2007) employed a hybrid 

finite-element finite-volume discretization to solve flow equations in complex geometry 

domains.  

 

 

Figure 2.4: A discretization example used in modeling a fractured porous medium with 

control-volume finite-difference formulation (Karimi et al. (2004)). To 

apply finite-difference scheme, a node is considered at the center of each 

element. 
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According to all the discrete fracture models discussed above, an unstructured 

gridding is required to conform to geometry of fractures. As the complexity of the 

fracture network increases, a more detailed discretization is required to capture the exact 

shape of fractures. This problem not only complicates the development of gridding 

algorithms, but also hinders their implementation in conventional reservoir simulators. To 

eliminate gridding problems associated with DFMs, Lee et al. (2000, 2001) and Li and 

Lee (2008) introduced a novel model, the Embedded Discrete Fracture Model (EDFM). 

Using EDFM, they explicitly modeled fracture planes without discretization of the matrix 

domain into unstructured elements. In their model, fracture planes intersect the matrix 

grid and thus are discretized by matrix cell boundaries. In fact, fracture planes are 

surrounded by matrix gridblocks and their boundaries do not coincide. Since EDFM is 

the main focus of this research, a detailed description of this model along with the 

implementation scheme is presented in Chapter 4.    
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Chapter 3: Overview of UTCOMP and UTGEL Reservoir Simulators 

 

For modeling and simulation of flow in the complex fractured reservoirs, the 

formulation of UTCOMP and UTGEL, the in-house reservoir simulators, has been 

extended to enhance their capabilities in modeling such reservoirs. To do so, the 

Embedded Discrete Fracture Modeling approach (EDFM) has been implemented using 

the non-neighboring connection concept. In this chapter, in view of introducing the 

structure and features of UTCOMP and UTGEL reservoir simulators, a brief overview of 

formulations and solution schemes is presented. Later, in Chapter 4, a detailed 

methodology of EDFM and the corresponding modifications are discussed. 

 

3.1 UTCOMP RESERVOIR SIMULATOR 

The University of Texas compositional reservoir simulator (UTCOMP) was first 

developed by Chang (1990) to model miscible gas flooding. However, after more than 

two decades of development, it has transformed into a more comprehensive reservoir 

simulator capable of modeling a variety of three-dimensional equation of state (EOS) 

compositional simulation problems with up to four phases (aqueous phase, oil phase, gas 

phase, and second non-aqueous liquid phase). There are several features available in 

UTCOMP that allow simulation of more complex problems, such as polymer flooding, 

surfactant flooding, asphaltene precipitation, CO2 sequestration, miscible and immiscible 

gas flooding, gas-foam flooding, and several non-isothermal processes.   

UTCOMP is an IMPEC-type reservoir simulator in which the pressure equation is 

solved implicitly followed by an explicit solution of concentrations and saturations. To 

more accurately model reservoir simulation problems, several numerical features have 
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been added over the past few years including higher-order finite-difference methods and 

robust numerical solvers. 

 In the next section, the mathematical and governing equations of the UTCOMP 

reservoir simulator are presented and the procedures for deriving such equations are 

expressed. Although these equations cover the general mathematical structure of the 

simulator, the discussions of a few principal concepts, such pertaining to phase 

equilibrium calculations, relative permeability models etc., are not presented in this 

chapter. For detailed formulation and description of these features, one is referred to 

Chang (1990) and to UTCOMP Technical Documentation 3.8 (2011). 

 

 3.1.1 Governing Formulations 

In this section, the principal mathematical formulations of UTCOMP are 

expressed; these are mass conservation and auxiliary equations, pressure equation, and 

initial and boundary conditions. For certain equations, the basic assumptions and the 

calculations for deriving the equations are presented. 

 

3.1.1.1 Mass Conservation and Auxiliary Equations  

To derive the conservation of mass statement, we start from the strong form of the 

conservation equation for component i  in a multiphase flow (Eq. (3.1)), which applies to 

every point of the system of interest. 
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where 
iW , iF , 

iR , 
cN  are total concentration of component i , flux of component i , 

source terms, and number of components, respectively (Lake et al. 1984). The unit of this 

equation is mole per unit bulk volume per unit time. For further development of Eq. (3.1), 

the following auxiliary equations are employed (Eqs. (3.2) through (3.6)). Eq. (3.2) leads 

to the definition of the accumulation term which includes the adsorption on solid surface 

as well. However, the adsorption term is neglected in the version used in this work. The 

flux definition in Eq. (3.3) is comprised of two terms, convection and dispersion. Eqs. 

(3.4) and (3.5) are Darcy’s law for multiphase flow and the relative mobility definition, 

respectively. It is noteworthy to point out that all of these auxiliary relations have an 

empirical basis.  
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where 

   Porosity 

pN   Number of phases 

j   Molar density of phase j  

s   Molar density of solid phase 

jS   Saturation of phase j  

ijx   Mole fraction of component i  in phase j  

isx   Mole fraction of component i  adsorbed on solid 

ju   Velocity of phase j  

ijK   Components of dispersion tensor 

k   Absolute permeability diagonal tensor 

rj   Relative mobility of phase j  

jP   Pressure of phase j  

j   Specific gravity of phase j  

D   Depth 

rjk   Relative permeability of phase j  

j   Viscosity of phase j  

iq   Molar flow rate of component i  

b
V   Bulk volume of gridblock 

 

 In the above equations, phase indices are 1-Aqueous phase, 2-Oileic phase, 3-

Gaseous phase, and 4-Second non-aqueous liquid phase. In terms of component 

numbering, numbers from 1 to cN  are for hydrocarbon components, while 1cN 

accounts for water component. Also, we assume complete immiscibility between water 

and other hydrocarbon phases.  
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 If we substitute Eqs. (3.2) through (3.6) into Eq. (3.1), we obtain the mass 

conservation equation for each component. Thus, we have 
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These non-linear partial differential equations are solved along with other additional 

equations. For more detail about the discretization of these equations and the solution 

procedure, one is referred to Chang (1990) and UTCOMP Technical Documentation 3.8 

(2011). 

 

3.1.1.2  Pressure Equation 

 The pressure equation is derived based on a total mass balance statement on all of 

the existing phases in the system. To do so, at every time step, the summation of volumes 

occupied by all of the phases is set to be equal to the total pore volume (Chang (1990)). 

This statement is shown by Eq. (3.8) where tV  is the total fluid volume, pV  is the pore 

volume as a function of pressure, and N  is the vector of the total number of moles for 

every component iN .  

 

   , .t pV P N V P                                                                                                       (3.8) 

 

If we differentiate both sides of the above equation with respect to time and follow with 

the chain rule, we obtain 
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If we assume a slightly compressible formation (linear change in porosity with respect to 

pressure) and use Eq. (3.2) to calculate total number of moles for each component, we 

can substitute all the resultant information back into Eq. (3.9) and come up with the final 

form of the pressure equation as 

 

 

1
0

1 1

1

2
1 1

1 1

1 1 1

,

pc

pc

pc c

nn
t

ti rj j ijP f b
i j

nn

ti rj j ij jc jb
i j

nn n

ti j ij j ij ti ib
i j i

V P
V c V V k x P

P t

V V k x P D

V V x S k x V q

 

  





 



 

 

  

  
  

  

 
   
 

    

   

 

 

  

                                                 (3.10) 

 

where 

0

PV   Pore volume at reference pressure 

fc   Formation compressibility 

tiV   Partial molar volume of component i  

2c jP   Capillary pressure between phase 2 and phase j  

The other parameters are the same as the ones introduced for Eq. (3.7). 

 To solve the pressure and mass balance equations, an IMPEC-type formulation is 

employed. At every time step, after the calculation of basic parameters, a system of linear 

matrix equations is formed where the pressure for all of the gridblocks is solved 

simultaneously and implicitly. To do that, several robust numerical solvers have been 
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added to the reservoir simulator capable of solving numerous types of linear system of 

equations. Later, in the next chapter, it is shown that the implementation of the 

Embedded Discrete Fracture Model (EDFM) would alter the structure of the linear 

equations. After solving the system, the updated pressures are used to calculate 

concentrations and saturations of all of the components and phases. Since the pressure in 

the next time step is known, it is called an explicit solution of concentration. Finally, all 

of the updated values are used in the next loop to perform the calculations for the next 

time step.  

 

3.1.2   Initial and Boundary Conditions 

To solve the pressure and mass balance equations for the set of non-linear partial 

differential equations, we need initial and boundary conditions. The initialization process 

is defined as either introducing the unknowns directly at the very first time step, or 

computing them from other relations indirectly. Gridblock pressures, phase saturations, 

and phase molar compositions of components are deemed as unknown parameters that 

are required for simulation initialization. If the total moles of hydrocarbon components 

are input to the simulation, phase behavior calculation is needed to solve for initial 

concentrations and hydrocarbon phases saturations. Also, the initial saturation of water is 

given by the user. Likewise, in terms of static equilibrium, there are two ways to 

determine pressures at every gridblock. The simplest one is to directly input initial 

pressures; however, if the proposed initial condition does not satisfy the static 

equilibrium condition, after one or two time steps the simulator itself modifies the 

pressure distribution. The second approach is to determine a datum and the corresponding 
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initial pressure; therefore, the pressures for other gridblocks are determined based on the 

static pressure head considering the depth of each gridblock.  

In UTCOMP, the boundary conditions are divided into three classes: no-flow, 

inflow, and outflow boundaries (Chang (1990)). The no-flow boundary condition is 

simply expressed as zero velocity across the impermeable boxed-shaped reservoir limits. 

This condition is satisfied by setting transmissibility factors to zero at the specified 

direction for boundary gridblocks. More detail about the formulation of transmissibility 

factors is given in the next chapter. On the other hand, to implement inflow and outflow 

boundary conditions, well models are necessary. Well models define the relation between 

well rates, bottomhole pressure, and well cell pressure as presented in Eq. (3.11), where 

jQ  is the flow rate for phase j , 
jPI  is the phase productivity index, 

wfP  is flowing 

bottomhole pressure, and 
jP  is phase pressure at well cell.  

 

  1... .j j j Pwf
Q PI P P for j N                                                              (3.11) 

 

The Peaceman’s relation and the Babu and Odeh model have been implemented 

in UTCOMP to compute the productivity index. In the next chapter, where well-fracture 

intersection is investigated, more detail is presented about these models. In terms of well 

operating conditions, several constraints are available, such as constant flowing 

bottomhole pressure and constant flow rate.  
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3.2 UTGEL RESERVOIR SIMULATOR 

 The UTGEL reservoir simulator is a specific version of the well-known chemical 

flooding compositional simulator, UTCHEM, developed at The University of Texas at 

Austin. UTGEL has developed and tuned additionally for modeling conformance control 

using several types of polymer gels through permeability reduction factors. However, it is 

still capable of modeling three-dimensional, non-isothermal, multiphase and 

multicomponent compositional problems, such as surfactant flooding, polymer flooding, 

tracer flooding, and non-isothermal EOR processes. In terms of the components, UTGEL 

can track water, oil, surfactant, polymer, anions, cations, alcohol, tracer, and up to seven 

gel species. The overall phases are aqueous phase, oleic phase, and microemulsion phase, 

all in the state of liquid.  

 Similar to UTCOMP, to discretize flow equations, a finite-difference approach is 

used, and the solution scheme is IMPES (Implicit solution of pressure equation followed 

by explicit solution of saturations). Also, an energy balance equation is solved explicitly 

to compute temperature changes due to heat transfer in the reservoir. Moreover, to 

increase the numerical accuracy of the solution schemes, higher-order methods are added 

to the formulations. 

 In the following sections, the governing equations of UTGEL are presented. Since 

the derivations follow the same concept as UTCOMP, the final forms of equations are 

only discussed. Later in Chapter 6, a brief discussion of UTGEL capabilities in modeling 

several types of gel conformance control is introduced. For more detail about the general 

features of UTGEL, one can refer to UTGEL Technical Documentation V.01 (2010). 

Also, since UTGEL is adopted from UTCHEM, more information about the formulations 

is found in Datta Gupta (1986), Saad (1989), and Bhuyan et al. (1990). 
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3.2.1   Governing Formulations 

The overall mathematical formulation of UTGEL is described by three principal 

equations: mass balance for the volume occupying components, pressure equation 

obtained by an overall mass balance, and energy equation. There are other auxiliary 

relations used in every time step to calculate required properties. 

 

3.2.1.1    Mass Conservation Equation 

If we start again from Eq. (3.1) and substitute the corresponding auxiliary 

equations in terms of mass per unit volume, we obtain a conservation statement, which is 

similar to Eq. (3.7) with equivalent parameters. 
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where 

   Porosity 

C   Overall volume concentration of component   

   Mass density of component   

pn   Number of phases 

cn   Number of components 

l
C   Volume concentration of component   in phase l  

l
u   Velocity of phase l  

l
S   Saturation of phase l  

lK   Components of dispersion tensor 

R   Source term for component   
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In the above equation, the overall volume of component   per unit volume is defined as  
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where 
CVn  is the total number of volume occupying components, Ĉ  is the adsorbed 

concentration of component  , and 
1

ˆ1
CVn

C


 
 

 
  is reduction in pore volume due to 

adsorption. If we neglect the adsorption term and replace the mass concentration terms 

(i.e. 
lC  ) with molar concentrations (i.e. j ijx ), we  obtain Eq. (3.7). 

 

3.2.1.2    Pressure Equation 

To obtain the pressure equation, we need to examine the total material balance 

over all of the volume occupying components.  Thus, if we sum Eq. (3.12) over all the 

volume occupying components and expand the derivation term on the left hand side, we 

get to the final form of pressure equation, which is applied to water phase: 
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where 

tC   Total compressibility 

rC   Rock compressibility 

0C   Component compressibility 

1P   Water phase pressure 

rlc
   Relative mobility with correction for fluid compressibility 

rTc Total mobility with correction for fluid compressibility 

h   Elevation with respect to datum 

1cl
P   Capillary pressure with respect to water 

The other parameters are the same as the ones in material balance equation. 

 

3.2.1.3    Energy Conservation Equation 

 Several chemical EOR processes are temperature-dependent. To determine 

temperature at every time step, we need to solve the energy balance equation.  If we 

assume that advection and heat conduction are the only processes involved in heat 

transfer, we can solve the following energy balance equation to compute temperature.  
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where 

T   Reservoir temperature 

vsC   Rock heat capacities at constant volume 

vl
C   Phase l  heat capacities at constant volume 

pl
C   Phase l  heat capacities at constant pressure 

T   Constant thermal conductivity 

Hq   Enthalpy source term per bulk volume 

LQ   Heat loss to overburden and underburden formations 

 

3.2.2   Initial and Boundary Conditions 

 Similar to UTCOMP, there are direct and indirect methods to input initial 

conditions for the reservoir model. Pressures, phase saturations, and components volume 

fraction are the properties whose values are required to start the simulation run. In terms 

of boundary conditions, the external boundaries are of no flow and no heat transfer; for 

the internal boundaries, i.e. wells, there are several operating conditions defined in the 

code.  

 The solution scheme for UTGEL is IMPES. For IMPES-type formulation, at first 

the pressure equation is solved implicitly. Then, after updating some properties, the mass 

balance equation for each component is solved explicitly. Finally, after updating the rest 

of the parameters, temperature is obtained by explicit solution of the energy balance 

equation.  
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Chapter 4: Overview of Embedded Discrete Fracture Model (EDFM) 

and the Implementation Approach 

 

The Embedded Discrete Fracture Model (EDFM) was originally proposed by Li 

and Lee (2008) to take advantage of the synergy between dual continuum and discrete 

fracture models. Later, this approach was developed further by Moinfar et al. (2012, 

2014) to enhance its capability in modeling arbitrary oriented, dip angled fractures. Based 

on this model, the fractures are inserted explicitly in the matrix grid and are coupled with 

the matrix domain by the modified transmissibility factors. 

To better understand the concept of EDFM, the methodology for fractures 

treatment and the derivation of the transmissibility factors are discussed in the next 

sections, followed by a number of simple examples. Moreover, Non-Neighboring 

Connections (NNC) approach is introduced in this chapter, which has been used to 

implement EDFM in UTCOMP and UTGEL reservoir simulators. 

 

4.1 DUAL CONTINUUM AND DISCRETE FRACTURE MODELS SYNERGY 

 Accurate and comprehensive models are required to capture the high degree of 

complexity associated with the fracture domain and to investigate the flow in fractured 

reservoirs. Several approaches have been proposed to simulate and study the behavior of 

fractured reservoirs (with natural and/or induced fractures). Dual continuum and discrete 

fracture models are the ones that are widely used in the industry.   

The dual porosity and dual permeability (or dual continuum) approaches have the 

upper hand in terms of simplicity in gridding and in setting up the model parameters. 

Based on the dual continuum approaches, the pressure and the transport equations for the 
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two communicating grids are solved simultaneously using a finite-difference method 

(FDM). The gridding is straightforward for both the matrix and the fracture systems. 

Similar to conventional methods, the structured gridding is used to discretize both the 

matrix and the fracture domains, where one fracture control-volume is connected to every 

matrix gridblock. Often, the same grid is selected for discretization of both domains, 

although the fracture system can be discretized into coarser gridblocks. To account for 

the communication between these two coupled systems, a term, called the transfer 

function, is defined for every matrix gridblock. However, because of uncertainty over the 

structure and the geometry of factures, defining the transfer function for real fractured 

reservoirs is very challenging. Figure 4.1 illustrates the configuration of a dual continuum 

approach for modeling a naturally fractured reservoir. 

 

 

 

Figure 4.1: Configuration of the dual continuum approach: (a) Schematic of a naturally 

fractured reservoir, (b) and the corresponding coupled matrix and fracture 

domains. 
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The mentioned capabilities have made dual continuum models into one of the 

most popular approaches in the petroleum industry for studying naturally fractured 

reservoirs (NFR). However, on account of several major simplifications (in terms of 

upscaling the fractures effect), dual continuum models fail to represent problems with 

multi-scale, slanted, irregularly spaced, non-uniform fractures. These deficiencies 

become more significant when we are interested in investigating the effect of individual 

fracture planes on reservoir performance, such as in the case of hydraulically fractured 

reservoirs. 

For a more accurate evaluation of the performance of fractured reservoirs, 

especially when few fractures dominate the fluid flow, discrete fracture modeling 

approaches have developed. To capture the complex configuration of fractures, 

unstructured grid is used in this approach, where the matrix block is represented by 

polygons and polyhedrons in 2D and 3D problems, respectively. Moreover, since the 

fracture aperture is not being considered in the gridding algorithm, fractures are 

discretized into segments and polygons in 2D and 3D problems, respectively (i.e. 

fractures have lower Euclidean dimensions). The communication of these control-

volumes is then defined based on the modified transmissibility factors. Hence, the 

discrete fracture models enable explicit consideration of fracture entities.  

The discrete fracture models, although more accurate compared to dual 

continuum methods, are still computationally expensive. To conform to the complex 

reservoir elements or geometries (such as fractures and irregular boundaries), the 

gridding algorithms tend to refine the cells as one gets closer to such features. Therefore, 

for a complex fracture configuration, a higher number of cells are required as shown in 

Figure 4.2, which in turn results in a significant increase in the computational time. Also, 

due to small volume of the refined cells next to the fractures, the numerical stability and 
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the time step size of the simulation runs are reduced.  These problems, albeit alleviated 

significantly over the past few years, are the major obstacles to an expanded commercial 

use of the discrete fracture models in the petroleum industry.  

 

 
 

Figure 4.2: Schematic of a discrete fracture model (Karimi-Fard et al. (2004)): (a) A 

naturally fractured reservoir, and (b) the corresponding unstructured grid, in 

which the red ellipses highlight the regions with highly refined cells. 

In view of pros and cons of the above discussed models, several methods have 

been proposed recently in the petroleum literature, offering methodologies to merge the 

dual continuum and discrete fracture models. In these new methods, the discrete fracture 

models are applied to achieve the transport parameters more accurately (including 

upscaled permeabilities, transfer functions, or transmissibility factors) by explicit 

consideration of individual fractures. These modified parameters are then utilized in a 

structured grid similar to dual continuum models.  Hence, the accuracy of discrete 

fracture models is combined with the gridding convenience of dual continuum models. 
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The Embedded Discrete Fracture Model (EDFM) has developed recently based on 

the similar concept of dual continuum and discrete fracture models synergy. This model 

has been implemented in UTCOMP and UTGEL reservoir simulators to enhance their 

capabilities in modeling a variety of hydrocarbon recovery methods in fractured 

reservoirs. The following section describes in detail the EDFM methodology. 

 

4.2 EMBEDDED DISCRETE FRACTURE MODEL (EDFM) 

 As mentioned above, the EDFM belongs to a new class of models that employ 

simultaneously the benefits of the dual continuum and the discrete fracture models in 

studying flow in fractured porous medium. In this class of models, the reservoir is 

divided into different domains based on the contrast between properties throughout the 

formation. Each domain is then characterized accordingly by the dual continuum or 

discrete fracture models to determine the effective properties. After examining each 

domain separately, a proper methodology is used to couple fluid flow between different 

domains and finally in the whole formation.  

 As a base for the EDFM concept, Lee et al. (2000, 2001) introduced a hierarchical 

approach to divide the fracture domain into three categories based on the fractures length-

scale.  These categories included short, medium-length, and long fractures compared to 

the size of the matrix gridblocks. The effects of the first two classes of fractures were 

upscaled and added to the original permeability tensor of the corresponding matrix 

gridblocks. However, the long-scale fractures were modeled explicitly using the similar 

formulation as well productivity equation, while a new parameter, the transport index, 

was used instead of the productivity index (PI). However, they did not explain exactly 

how to compute the transport index and instead used a fixed value due to numerical 
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instability in the presented problems. Also, for simplicity, they limited the long-scale 

fractures only to vertical rectangular planes.  

 For modeling short- and medium-length fractures, Lee et al. (2000, 2001) used an 

analytical solution and a boundary element method, respectively, to incorporate the effect 

of fractures on flow in the rock matrix. The permeability of the matrix gridblocks was 

then replaced by the effective permeability tensor derived from these two methods. In 

fact, to account for the effect of these types of fractures, a single porosity approach was 

utilized. However, using this technique, a separate analysis of flow in matrix and fracture 

domains was impossible. Therefore, dual continuum approach was preferred in the case 

where studying coupled flow between fracture and matrix systems was of more interest.  

 Later, Li and Lee (2008) improved the application of EDFM in modeling fracture 

networks. They introduced a mathematical approach to approximate the transmissibility 

index. In their model, the long-scale fractures were treated as 2D rectangular planes with 

arbitrary orientations, and the transmissibility factors were defined based on the geometry 

and the position of the fracture planes inside the matrix grid. Moreover, they proposed a 

similar method that allowed inclusion of the well-fracture intersection. They assumed 

negligible pressure drop in the fracture segment bounded inside the well block; therefore, 

they used the same definition of the transmissibility factor as the productivity index to 

account for well-fracture flow.  

 Although Li and Lee (2008) provided a suitable approach to model naturally 

fractured reservoirs, they limited their study only to simple fracture configurations such 

as vertical rectangular planes. Also, they focused more on the fluid transfer between 

fracture and matrix gridblocks and skipped the explanation for calculating the 

transmissibility index between two intersecting fracture planes.   

 To enhance the capability of EDFM in modeling more realistic fractured 
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reservoirs, Moinfar et al. (2012, 2014) extended the scope of the model to investigate 

arbitrary dip-angled fracture planes with dynamic properties. They devised a systematic 

approach to compute the fluid exchange in matrix-fracture, fracture-fracture, and well-

fracture combinations. Moreover, they proposed a framework to implement EDFM into 

conventional reservoir simulators working with structured grids. They incorporated 

EDFM in the General Purpose Adaptive Simulator (GPAS), developed under fully 

implicit formulation scheme, and examined several production scenarios in naturally and 

hydraulically fractured reservoirs. They demonstrated that application of EDFM with a 

proper specification of the gridblock size results in accurate and also computationally 

efficient simulation runs compared to the fine-grid simulations.  

The successful implementation of EDFM in the GPAS brought up the question 

whether or not EDFM is applicable in IMPES-type reservoir simulators (Implicit 

Pressure, Explicit Saturation) as well. Although IMPES formulations are less stable, they 

require less numerical effort and are more accurate in most of the reservoir simulation 

problems compared to the fully implicit solution techniques. In addition, adding new 

features to the IMPES-type reservoir simulators is much easier. These benefits have made 

the IMPES formulation scheme to one of the most popular methods for development of 

new reservoir simulators in the petroleum industry. Hence, incorporating the EDFM with 

the available IMPES-type in-house reservoir simulators enables us to investigate a broad 

range of reservoir engineering applications in fractured reservoirs. 

To evaluate the performance of EDFM using IMPES-type formulations, this 

model has been implemented in the UTCOMP and UTGEL reservoir simulators. To do 

so, a similar methodology to the one proposed by Moinfar (2013) is used, which is 

described in detail in the following sections. Moreover, due to the differences in the 

formulation schemes, several modifications have been made that are discussed later in 
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this chapter.  

 

4.2.1 Methodology 

 According to the work of Lee et al. (2001), Li and Lee (2008), and Moinfar 

(2013), EDFM has developed based on the combined advantages of the dual continuum 

and discrete fracture models. To capture all the possible complexities inherent in the 

fracture network, a discrete modeling approach is selected to treat the fractures. However, 

to simplify the setting of the model parameters and to achieve convenient representation 

of the reservoir geometry, the rock matrix is discretized using structured grids. In fact, the 

matrix gridding is somehow independent of the fracture network configuration.  

 To set up a reservoir model using EDFM, two coupled domains are required, the 

matrix domain and the fracture system. The matrix domain consists of one or more layers 

of cubic blocks known as structured gridblocks. The number and the size of the matrix 

gridblocks depend on the type of the problem and also the numerical aspects. The smaller 

the size of the gridblocks, the more accurate solution is obtained; however, the 

computational cost is sacrificed. On the topic of sensitivity analysis on the size of the 

matrix gridblocks, a discussion is presented in Chapter 5. To represent the fracture 

system, however, 2D rectangular planes are used in which the position of each fracture 

plane is determined using the coordinates of the rectangle vertices. Figure 4.3 depicts a 

simple model containing three fracture planes. As observed in the figure, the fracture 

planes can have arbitrary orientation and dip angles and are not necessarily aligned with 

the major coordinate axes. As seen in the top view of the model (Figure 4.3b), since the 

red fracture is perpendicular to the bedding plane, it is displayed as a line while the other 

two inclined fractures appear as rectangles in the map view. The dip angles of the green 
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and the blue fractures are 10 an15 degrees, respectively.  

 Depending on position, orientation, dip angle, and height of fracture planes, each 

rectangle cuts through several gridblocks in each layer. To check whether or not a 

gridblock is intersected by a fracture plane, the position and the coordinates of blocks 

vertices are checked against the rectangular plane equation. Figure 4.4 illustrates the 

gridblocks intersected by the fracture planes in different layers for the reservoir model 

presented in Figure 4.3. The color of each gridblock represents the color of the fracture 

plane that has intersected that specific gridblock. If a block is cut by more than one 

fracture, it is shown in purple. As presented in Figure 4.4, since the red fracture is 

vertical, the intersection pattern remains the same from top layer to the bottom. However, 

for the green and the blue fractures, the intersection pattern as well as the number of 

intersected gridblocks changes from one layer to another due to the dip angle.  

 As a result of the intersection between rectangular planes and the matrix grid, 

each fracture is cut into several pieces by the block boundaries. Each fracture piece is 

considered as a control-volume and is accounted for in the mass balance calculation and 

in the fluid exchange between fracture and matrix gridblocks. Before running a 

simulation problem, a list of the corresponding fracture control-volumes and matrix 

gridblocks is generated and used as an input for the reservoir simulator. 

 Depending on the orientation and the dip angle of fracture planes, the intersection 

between a fracture plane and a gridblock is a polygon with 3 to 6 vertices. All the five 

possible shapes for the intersections are illustrated in Figure 4.5. If the fracture plane is 

perpendicular to the bedding, then regardless of the plane orientation, the intersection 

would be a rectangle (Figures 4.5a & 4.5b).  
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(a) 

 

(b) 

Figure 4.3: Representation of a fractured reservoir model using the EDFM concept: (a) 

Angled view highlighting vertical and inclined fractures, and (b) top view. 
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(a)                                                                         (b) 

 

 (c) 

Figure 4.4: Color-coded illustration of the gridblocks intersected by the matching color 

fractures in the (a) first, (b) second, (c) and third layers. The gridblocks with 

multiple intersections are shown in purple. 

In general, in EDFM, although the rock matrix domain contains structured blocks, 

the fracture planes are discretized into unstructured elements. Similar to the discrete 

fracture models, the fractures are of lower dimensions compared to the matrix cells and 

are discretized into 2D unstructured elements. The fracture discretization depends mainly 

on the geometry of the fractures and also on the matrix gridblock dimensions. For the 

case of inclined fractures, the plane may be discretized into segments with various sizes 
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and shapes. 

 
(a)                                                (b)                                                            (c) 

 

 

                              (d)                                                                          (e) 

Figure 4.5: Possible shapes of the intersection between a plane and a cube: (a) rectangle 

(intersection points are on the parallel cube edges) (b) rectangle (intersection 

points are on the adjacent cube edges) (c) triangle (d) pentagon (e) hexagon. 
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Figure 4.6 illustrates the discretization of the three fracture planes presented in the 

previous example. The planes have been discretized by boundaries of the intersected 

gridblocks in all the three layers. Based on this figure, the shape and the size of the 

fracture segments vary significantly, even in the case of the vertical fracture. Although all 

of the segments are rectangular, as the intersection between the vertical fracture (red 

plane) and the grid system, there are thin pieces in the middle of the plane where the 

plane has almost cut the corner of a few gridblocks. On the other hand, for inclined 

fractures, the discretized segments are different polygons. For instance, the slanted 

fractures (the blue and green planes) consist of triangular, quadrilateral, pentagonal, and 

hexagonal shapes located next to each other. The summation of all of these pieces adds 

up to the original fracture planes. In terms of the size of the segments, a number of small 

triangles have been formed (Figure 4.6b and 4.6c) as a result of the intersection between 

the fracture planes and the corner of matrix blocks. These small portions can cause 

numerical problems and can increase simulation time substantially.  

In general, each fracture segment is a control-volume, similar to matrix 

gridblocks, and is characterized by rock and fluid properties. To compute such attributes, 

exact calculations of the shape and the geometry of the fracture segments are necessary. 

Parameters such as permeability, porosity, and transmissibility factors of the fracture 

control-volumes are strongly dependent on the shape and configuration of the fracture 

planes. The permeability of the fractures either can be derived using the aperture based 

formulations or can be used as an input directly. However, to compute porosity and 

transmissibility factors, the surface area of each fracture control-volume confined in the 

matrix block is required. Eq. (4.1) represents the porosity of each fracture control-volume  
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  (a) 

 

(b) 

 

(c) 

Figure 4.6: Fracture planes discretization for the example reservoir model. (a) Red 

vertical fracture plane is composed of only rectangular segments. (b) Blue 

inclined fracture plane with 15 degree dip angle is composed of triangular, 

quadrilateral, pentagonal, and hexagonal segments. (c) Green inclined 

fracture with 10 degree dip angle is composed of triangular, quadrilateral, 

pentagonal, and hexagonal segments. 
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as a function of the surface area of the fracture segment. In Eq. (4.1),  f i
 ,  , and 

 f i
A  are porosity, aperture, and surface area of the fracture segment number i , 

respectively; and x , y , and z  are the dimensions of the matrix gridblock 

corresponding to the fracture cell number i .  As realized from this equation, small 

surface area of a segment results in a very low porosity compared to other adjacent 

control-volumes, especially matrix gridblocks. As mentioned before, this contrast may 

cause numerical and time step problems over the simulation run.   
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As mentioned previously, each fracture control-volume is connected to a matrix 

gridblock. In addition, due to fracture discretization, each segment is connected to 

neighboring fracture cells as well. Thus, for solving mass balance equations, all of these 

connections must be taken into account in order to calculate fluid exchange between the 

neighboring cells. To do so, the transmissibility factor between every adjacent pair needs 

to be computed. For connections involving a fracture control-volume, the transmissibility 

factor is modified to reflect the geometry and properties of the fracture. In the subsequent 

section, these new types of connections are classified into four groups and then the 

formulation for calculating the transmissibility factor for each type is defined. 
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4.2.2 Fracture Connections in EDFM 

After finishing the discretization process, to study the fluid flow in a coupled 

matrix-fracture system, the connections between communicating control-volumes need to 

be quantified. For neighboring matrix gridblocks, the transmissibility factors have already 

been derived and used in conventional reservoir simulators. However, due to explicit 

consideration of fractures embedded inside the matrix grid, and the unstructured nature of 

the discretization, the transmissibility factors for connections involving a fracture cell 

have to be modified.  

 Although Li and Lee (2008) introduced an approach to approximate the 

transmissibility index between a fracture and the corresponding matrix gridblock, the 

more systematic formulation was proposed by Moinfar et al. (2012). They defined three 

types of new connections in EDFM for the communicating matrix and fracture cells. 

Since they arranged a separate computational domain for fractures than the matrix grid, 

they used the concept of Non-Neighboring Connections (NNC) to numerically attach the 

communicating fracture and matrix cells. They then defined a few formulations based on 

cell properties to compute the transmissibility factors for NNC types I, II, and III. The 

subsequent sections overview these formulations and the process for deriving the 

parameters. 

The transmissibility factors for the three types of NNCs are derived based on the 

similar concept of flow rate calculation between two adjacent gridblocks using the 

multiphase Darcy formulation for 1D flow (Eq. (4.2)). In this equation, the subscript j  

denotes the phase number and 1/ 2i   refers to the block face between the gridblocks 

number i  and 1i . Based on this equation, the flow rate for each phase between two 

neighboring matrix gridblocks is proportional to the potential difference. In some 

notations, the proportionality constant is called the “transmissibility,” which consists of 
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time-dependent parameters, such as phase relative permeability ( rjk ) and viscosity ( j ), 

and constant properties, such as absolute permeability (
1/2i

k


), area (
1/2i

A


) and the size 

of the gridblocks (
1/2i

d


). For our discussion, we use “transmissibility factor” to refer to 

the constant portion of the transmissibility. The definitions of transmissibility and 

transmissibility factor are given by Eqs. (4.3) and (4.4), respectively.  
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 For more accurate estimation of the block face properties (subscripted by 1/ 2i  ), 

averaging techniques are required to incorporate the properties of both neighboring 

gridblocks. For instance, harmonic average is used to compute the absolute permeability 

at the face between two gridblocks, while arithmetic average is used to calculate the 

average block size. Inserting the average properties back into the Eq. (4.4) yields  
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where 
1/2xT 

 is the transmissibility factor between two adjacent gridblocks in the X-
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direction; xk  is the absolute permeability in X- direction; and y , x , and z  are the 

gridblock dimensions. Thus, if we compute the appropriate equivalent transmissibility 

factors for the connections involving a fracture cell, we can use Eqs. (4.2) and (4.3) to 

compute the fluid exchange between fracture-matrix and fracture-fracture cells. However, 

since fracture cells are unstructured elements, the definition of dimensions of a fracture 

control-volume would be different compared to a structured matrix gridblock.  

 Moinfar et al. (2012) proposed an approach, mainly based on the work of Li and 

Lee (2008) and Karimi-Fard et al. (2004), to derive the transmissibility factors between 

fracture-matrix and fracture-fracture cells. This approach was developed basically based 

on Eq. (4.4) to compute every term in this equation honoring the geometry and the shape 

of the fracture segments. Hence, accurate approximations of the position and the surface 

area of the individual fracture segments are of critical importance in this approach. In the 

following sections, the different types of fracture connections and the corresponding 

formulations for calculating transmissibility factors are discussed. 

 

 4.2.2.1   Matrix-Fracture Connection 

 This type of connection, known as NNC type I, is created as the result of 

intersection between a fracture plane and a matrix gridblock. Every term in the Eq. (4.4) 

is computed based on the position and the properties of the matrix gridblock and the 

fracture segment. The calculated transmissibility factor is then used to connect these two 

cells in the computational domain (Figure 4.7).  

 For this type of connections, the average permeability ( m fk  ) is defined as the 

harmonic average of the corresponding matrix and fracture permeabilities. The subscript 

m f  refers to the matrix-fracture connection. The area  m fA 
is the fracture segment 
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surface area bounded inside the gridblock. Unlike the average permeability, the area 

changes from segment to segment due to the geometry and configuration of the 

intersections (Figure 4.6). 

 

 

                        

(a)                                                                           (b) 

Figure 4.7: Schematic of a fracture-matrix connection, known as NNC type I. (a) This 

intersection is considered in (b) the computational domain through a non-

neighboring connection with an equivalent transmissibility factor (
m fT 

). 

 

For the average distance between matrix and fracture control-volumes (
m fd 

), Li 

and Lee (2008) proposed an integral equation to calculate the average normal distance 

d  (Eq. (4.6)). They assumed that pressure everywhere in the gridblock is equal to the 

cell average pressure and flow is always perpendicular to the fracture segment. Later, the 

following equation was used by Hajibeygi et al. (2011) and Moinfar et al. (2012) to 

calculate the normal distance in 3D problems. In this equation, n  is the unit normal 

vector to the fracture plane; dv  is the volume element; V  is the volume of the matrix 

gridblock; and x  is the vector locating the volume element. The integral in the numerator 

is calculated using a numerical method. Further examples are available in Hajibeygi et al. 

(2011) and Moinfar et al. (2012). 
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 Using all of the derived parameters, the following equation is used, similar to Eq. 

(4.4), to calculate the equivalent transmissibility factor for the connection between a 

fracture segment and a matrix gridblock. It is important to mention that every fracture 

segment has only one connection of this type, while a matrix gridblock can have many.  
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4.2.2.2   Fracture-Fracture Connection (of two Different Fracture Planes) 

 When two fracture planes intersect each other, in a number of matrix gridblocks, 

the created fracture segments cross each other as well. For example in Figure 4.3, the 

blue and green fractures intersect each other in some of the gridblocks. Hence, after 

fracture discretization, segments containing a piece of the intersection line communicate 

to each other. This type of connections is known as NNC type II in Moinfar et al. (2012). 

Figure 4.8 depicts the track of the intersection line on the blue and green fractures after 

discretization. The fracture segments containing the matching color parts of the 

intersection line are connected in the computational domain. This type of connection is 

defined based on the equivalent transmissibility factor as shown in Figure 4.9.  Although 

eight gridblocks have more than one fracture segments (colored in purple in Figure 4.4), 

only four of them have intersecting segments (shown in Figure 4.8). In fact, in other 

cases, the two fractures pass through the gridblocks but they do not intersect each other. 

 To calculate the transmissibility factor for NNC type II, a formulation by Karimi-
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Fard et al. (2004) is applied. Based on Eq. (4.8), this transmissibility factor is derived as 

the harmonic average of the transmissibility factors of each individual fracture cell given 

by Eq. (4.9), where   is aperture and 
intL  is length of the intersection line between two 

fracture segments. The subscripts f  and f   denote two different fracture planes. Unlike 

NNC type I, there is no limitation on the number of NNC type II for a fracture segment. 

 

                 

(a) (b) 

  Figure 4.8: Discretized fracture planes with track of the intersection line. Segments 

containing the matching color part of the intersection line are connected in 

the computational domain. 

 

                                 

(a) (b) 

  Figure 4.9: Schematic of a fracture-fracture connection of two different fracture planes, 

known as NNC type II. (a) This intersection is considered in (b) the 

computational domain through a non-neighboring connection with an 

equivalent transmissibility factor ( 'f fT  ). 
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4.2.2.3   Fracture-Fracture Connection (of the Same Fracture Plane) 

Similar to the matrix domain, when a fracture plane is discretized, neighboring 

segments must be connected in the computational domain. This type of connection exists 

only between segments of the same fracture plane and is known as NNC type III in 

Moinfar et al. (2012). Since a fracture segment can have up to six edges, the maximum 

number of connections of this type is six in the computational domain. Based on Figure 

4.6, this type of connection is similar to the connections between 2D unstructured matrix 

gridblocks in a corner point problem. The expression for the transmissibility factor is 

presented by Eq. (4.10) in which fk  is the fracture permeability; fd  is the distance 

between centers of two neighboring cells; and fA  is the open face between two cells and 

is computed as aperture times length of the common edge. Figure 4.10 shows two 

fracture cells discretized by adjacent matrix gridblocks. In addition to matrix blocks, 

these fracture control-volumes communicate with each other as well. 
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(a) (b) 

  Figure 4.10: Schematic of a fracture-fracture connection of same fracture plane, known 

as NNC type III. (a) This connection is considered in (b) the 

computational domain through a non-neighboring connection with an 

equivalent transmissibility factor ( f fT  ). 

 

4.2.2.4   Well-Fracture Intersection 

When a well intersects a fracture, or when it is stimulated with a hydraulic 

fracturing job, the most important feature that controls the well flow is the fracture 

connection. In tight and unconventional reservoirs, almost all the fluid first gets into the 

fracture and then into the well. Thus, how the well-fracture communication is modeled is 

vital. To model well-fracture intersection, Moinfar et al. (2012) used a methodology 

similar to the Peaceman (1983) model to relate the well flow rate to the fracture segment 

pressure through which the intersection has occurred.  

In numerical reservoir simulation, the relation between volumetric well rate, jQ , 

and the pressure difference between bottomhole and gridblock pressures,  wf jP P , is 

defined as 

    

 ,j j jwf
Q PI P P                                                                                                   (4.11) 
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where 
jPI  is the productivity index and is described by the following equation for a 

vertical well in a three-dimensional reservoir. 
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In Eq. (4.12), the fraction on the right hand side, called the well index (WI ) in literature, 

consists of well block dimension, absolute permeabilities, and well radius. Moreover, the 

term or  is given by an expression introduced by Peaceman (1983), which similarly 

includes well block dimensions and absolute permeabilities (Eq. (4.13)). 
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 Therefore, based on Eqs. (4.12) and (4.13), if we know the absolute permeabilities 

and the well radius, all we need to compute the well index is the size of the matrix 

gridblock containing the well. Figure 4.11a shows the required dimensions for the above 

formulations. Moinfar et al. (2012) used the same analogy to find the dimensions of a 

fracture segment intersecting a well. By replacing the fracture cell dimensions and setting 

the directional absolute permeabilities to be equal, Eqs. (4.14) and (4.15) are derived for 

calculating WI  and or  when a vertical well is intersected by a fracture segment. Figure 

4.11b shows the corresponding fracture cell dimensions. Likewise, the equations for a 

horizontal well intersected by a transverse fracture are computed based on the 
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corresponding dimensions. 

 

 

(a)                                                                       (b) 

Figure 4.11: Illustration of the control-volume dimensions used in the definition of well 

index for (a) a matrix gridblock containing a well (b) and a fracture segment 

intersecting a well. The fracture segment bounded inside the gridblock is 

shown in green. The vertical dimension for the fracture is equal to the 

aperture. 
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4.3 PREPROCESSING CODE 

 To run a fractured reservoir simulation problem using EDFM approach, a few sets 

of new parameters are required to be added to the original input file. As discussed in 

preceding sections, due to introduction of fracture planes into a grid of matrix blocks, 

new types of control-volumes as well as new inter-cell communications are created. A 

preprocessing code has been developed outside the reservoir simulator environment by 

Cavalcante Filho et al. (2015), written in Python, to accurately locate the fracture planes 

and to calculate the EDFM parameters for the simulation runs carried out by UTCOMP-

EDFM and UTGEL-EDFM reservoir simulators. In the preprocessing code, first, the 

fracture planes discretization is performed based on the location and geometry of the 

fractures and then the total number of fracture cells is determined. After calculation of the 

properties of fracture cells, all the created segments are added to the initial computational 

domain composed of the matrix gridblocks. Next, to account for fluid communication 

between non-neighboring control-volumes, the transmissibility factors are computed 

based on the methodology described in the previous section. Finally, after full 

characterization of the model, a list of required parameters is printed in one or more input 

files to be attached to the main reservoir simulator input file. The new inputs include 

porosity, permeability, depth, and dimensions of every cell, number of non-neighboring 

connections, list of non-neighboring connections and the corresponding transmissibility 

factors, and the well indices for well-fracture intersections. Figure 4.12 depicts the 

framework for modeling and simulation of flow in fractured reservoirs using EDFM 

approach. 
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Figure 4.12: Framework for modeling flow in fractured reservoirs using EDFM approach. 
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 Until this stage, the fractured reservoir model has been broken down to a series of 

matrix and fracture control-volumes and a tool has been provided to quantify cell 

properties and transmissibility factors. Next, in order to perform a reservoir simulation 

study, all the cells need to be put together again in the computational domain. To do so, 

the original structures of the UTCOMP and UTGEL reservoir simulators need to be 

modified. In the subsequent sections, the methodologies for such modifications are 

introduced through the concept of non-neighboring connections, and the most efficient 

approach is specified. 

  

4.4 NON-NEIGHBORING CONNECTION METHODS  

Non-Neighboring Connection (NNC) is defined as a connection between two 

control-volumes or cells that are not physically adjacent to each other in the 

computational grid domain. In a general three-dimensional problem, each gridblock, at 

maximum, is connected to six other gridblocks (two in X-, two in Y-, and two in Z-

directions) (Figure 4.13). Locating these six cells in a cubical grid system follows simple 

procedures by inclusion of the conventional numbering techniques (which start 

numbering gridblocks first in X-direction, then Y-, and finally to the next layer or Z-

direction). In conventional simulators, all these six gridblocks are accounted as 

neighboring cells. In order to account for fluid transfer between a matrix gridblock and a 

fracture control-volume bounded inside the block (Figure 4.7), we need to add extra 

connections. However, since the number of neighboring connections cannot exceed six in 

the computational grid, to do so, these new types of connections have to be defined 

through non-neighboring connections. In fact, the communication between a matrix block 

and a fracture segment occurs in a direction rather than the major coordinates. Later, 
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these extra connections are used in solving mass balance and pressure equations as well. 

The amount of fluid that transfers between a matrix and fracture cells through these 

routes is significant and needs to be accounted for.    

 

 

Figure 4.13: Neighboring connections in a conventional computational grid. 

 

As a simple example of non-neighboring connections, we consider a 3×3 grid 

domain that contains a single non-orthogonal fracture (Figure 4.14). As shown in this 

illustration, the fracture line hits a number of gridblocks creating new interactions. To 

better understand the grid connectivity, the connections between communicating cells are 

depicted in a matrix format in which the X represents the connection between two cells. 

The matrix configuration for this example without fracture consideration is shown in 

Figure 4.15 representing typical grid connectivity. For a conventional grid domain, the 
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connectivity matrix is a bounded matrix with five and seven non-zero diagonals in 2D 

and 3D problems, respectively. However, inserting a fracture into the matrix domain will 

introduce additional connections between gridblocks. Hence, defining the matrix-fracture 

connections would alter the whole configuration and the structure of the connectivity 

matrix. 

 

 

Figure 4.14: A 3×3 grid with a single fracture to illustrate the NNC concept. 

 

      

Figure 4.15: The connectivity matrix for a 3×3 grid without fracture consideration. 
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In the subsequent sections, to model a fractured domain and the corresponding 

computational grid, three approaches are discussed and several patterns of non-

neighboring connections are presented. Moreover, the pros and cons of these methods are 

investigated in terms of models accuracy, computational cost, and requirements for the 

new parameters. 

 

4.4.1 Method I 

As the simplest approach, by considering the fracture as a line in the 2D grid, we 

can assume that the fracture connects the gridblocks containing the head and the tail of 

the fracture line. For instance, in Figure 4.14, gridblocks number 3 and 7 are connected 

although they are not adjacent to each other (NNC). This non-neighboring connection is 

shown in red in the connectivity matrix (Figure 4.16). However, in this approach, the 

effect of gridblocks intersected by the rest of the fracture is neglected. In other words, the 

fracture is modeled as an open pipe with sealed walls with no communication with the 

matrix domain unless through the inlet and the outlet. In fact, this assumption is 

acceptable for modeling the breakthrough time of an injected fluid (such as water) in a 

fractured reservoir. When the injected fluid enters a fracture, because of the high 

conductivity of the fracture compared to the surrounding rock, it does not leave the 

fracture unless at the fracture tip due to high pressure gradient. Thus, it is valid to assume 

that fracture connects only two gridblocks.  

Moreover, in this approach, the fluid exchange between the gridblocks number 3 

and 7 is considered to be instantaneous in which the fluid travelling time in the fracture is 

neglected. Due to very high permeability of the fracture compared to the rock matrix, the 

fluid front movement in fracture is much faster than in the matrix domain. Therefore, in 
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low density fractured reservoirs in which the fluid movement is mostly governed by the 

rock matrix, the fluid travelling time in the fracture can be skipped.    

 

 

Figure 4.16: The connectivity matrix in Method I for the 3×3 grid with a single fracture. 

 

 In this method the transmissibility factor between non-neighboring gridblocks 

(i.e. 3 7T  ) is calculated using the harmonic average of the transmissibility factors for the 

matrix-fracture intersections (i.e. 3 fT   and 7 fT  ) as presented in Eq. (4.16). The 

transmissibility factors for matrix-fracture intersections are computed using Eq. (4.7). 
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4.4.2 Method II 

In this approach, the fracture connects all the intersected gridblocks and the fluid 

exchange occurs between every pair of the intersected cells. This method provides a more 

realistic modeling approach compared to Method I in which two gridblocks were only 

connected. In fact, in Method II, the fracture represents a highly conductive pathway that 

communicates to the surrounding matrix at every point due to potential difference.  

However, similar to the previous method, the fluid transport through the fracture itself is 

neglected and the mass conservation equation is only solved for the matrix domain. 

As shown in Figure 4.17, the connectivity matrix in Method II has more non-zero 

elements compared to Method I. In fact, by increasing the number of fractures, the 

connectivity matrix tends to be more like a full matrix rather than a sparse matrix. The 

connectivity matrix is similar to the pressure matrix in terms of the number and the 

location of non-zero elements which needs to be inverted over every time step of the 

simulation. 

 

 

Figure 4.17: The connectivity matrix in Method II for the 3×3 grid with a single fracture. 
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In terms of transmissibility factors, Eq. (4.16) is applied again for every pair of 

the matrix gridblocks intersected by the same fracture. Based on Figure 4.17, we need to 

add 10 new transmissibility factors between gridblocks number 3, 5, 6, 7, and 8. 

Although a number of these gridblocks are already neighbors in the computational 

domain, the existence of fracture in these gridblocks alters the previous connections. 

 

4.4.3 Method III (EDFM) 

 If we choose EDFM to model the mentioned fractured reservoir model, unlike the 

previous approaches, the fracture needs to be discretized into several control-volumes (or 

cells) based on the intersection of the fracture line and the grid system. Then, the new 

cells are added to the computational domain through non-neighboring connections, and 

the connectivity matrix is modified. This method was discussed in detail in the preceding 

sections. 

To simply illustrate the NNC concept in EDFM approach, Figure 4.18 presents 

the previous grid domain with the discretized fracture. In this figure, the fracture is cut 

into 5 new cells numbered from 10 to 14. Each of these new elements is connected to the 

surrounding matrix blocks and the adjacent fracture cells. Consequently, the connectivity 

matrix needs to be enhanced to account for these new communications (Figure 4.19). In 

this example, the size of the connectivity matrix increases to 14×14 and the matrix 

becomes sparser.  

The EDFM approach, not only takes into account all the possible connections, but 

also provides a tool to evaluate the fluid flow in the fracture itself. In some type of 

fractured reservoirs, due to high density of the natural fractures, the fluid transport is 

mainly governed by the fracture system. Thus, evaluation of various fracture parameters 



 67 

using this method leads to better understanding of the flow in such reservoirs. However, 

using Methods I & II, the significance of the fracture is ignored. So, in terms of modeling 

accuracy, the EDFM approach provides better capabilities to study flow in fractured 

reservoirs. 

 

 

Figure 4.18: The 3×3 grid with a single fracture to illustrate the EDFM approach. The 

fracture is cut into 5 pieces with respect to the intersections with matrix 

gridblocks. 

 

 Although more accurate compared to other NNC methods, EDFM requires more 

computational time. In every time step of simulation, a system of linear equations is 

solved to calculate pressure for every cell in the computational domain, including the 

fracture cells. This system is solved in the form of a matrix equation. The size of the 

matrix equation is equal to the size of the connectivity matrix, which is proportional to 

the number of cells in the simulation. Hence, by increasing the number of cells or 

control-volumes, more effort is required to solve the linear matrix equation. In other 

words, EDFM is computationally more expensive because in this method, the fracture 

planes are discretized and the created cells are added to the computational domain. Also, 

unlike the conventional simulation problems, the connectivity matrix is not banded 
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anymore, which eliminates a number of the candidate solvers for solving such systems. 

Using a robust and efficient solver can significantly decrease the required time for this 

type of calculations.    

 

 

Figure 4.19: The connectivity matrix in Method III (EDFM) for the 3×3 grid with a 

single fracture. The dotted lines show the limits of the connectivity matrix 

for the non-fractured reservoir model.  

 The matrix and fracture cells communications need to be quantified to determine 

the fluid transfer between cells and solve for pressure and transport equations. While 

EDFM gives a systematic approach to compute the connection between cells (through 

definition of modified transmissibility factors), Methods I & II fail to introduce such 

calculations. However, based on the methodology used in EDFM, a technique was 

proposed to calculate the transmissibility factors for Methods I and II as well (Eq. (4.16)). 
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To investigate the performance of fractured reservoirs, in-depth analysis of fluid 

flow in complex fracture domain is crucial. In order to develop a comprehensive reservoir 

simulator to model fractured reservoirs, the EDFM (method III of NNC approaches) has 

been specified as the most accurate and convenient approach to add to UTCOMP and 

UTGEL reservoir simulators. In the subsequent section, the methodology and the 

principal modifications of the formulation are presented to handle non-neighboring 

connections.  

 

4.5 MODIFIED RESERVOIR SIMULATORS FORMULATIONS 

A novel methodology is proposed to employ EDFM in UTCOMP and UTGEL 

reservoir simulators, in which extra directions (rather than X-, Y-, and Z-directions) are 

added to account for non-neighboring connections. As it was shown in Figure 4.13, in a 

typical three-dimensional problem, each gridblock at maximum is connected to six other 

gridblocks. However, if the block is intersected by a fracture plane, an extra direction is 

required to calculate the fluid transfer between matrix and fracture cell. To illustrate a 

schematic of this concept, consider a matrix gridblock intersected by two different 

fracture planes; therefore, as explained previously for EDFM approach, two fracture cells 

are bounded inside this specific block (Figure 4.20a). At every time step in the 

simulation, mass transfer happens between this block and the two fracture cells as well as 

six neighboring matrix gridblocks. Thus, in mass balance equation, two extra directions 

must be included to capture matrix-fracture communications (Figure 4.20b). As a result, 

in this example, eight directions exist for this specific gridblock overall.  

Likewise, for all the fracture cells, this method is applied to implement non-

neighboring connections. The only difference is that for fracture cells there is no 
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neighboring cells and all the fluid transfer is through the NNC’s. Even for neighboring 

fracture segments of the same fracture plane, the connections are treated as NNCs. Figure 

4.21 shows a schematic of a fracture cell confined in a matrix block and the 

corresponding directions for mass balance calculations. One point to mention is that 

every fracture cell is only connected to one matrix block, while a matrix block can be 

connected to as many as fracture cells. 

 

 

(a) (b) 

Figure 4.20: In EDFM approach (a) a gridblock that is intersected by two fracture planes 

has a total of (b) eight connections. The red arrows show the non-

neighboring connections between the matrix block “ijk” and the fracture 

segments confined inside the block. 
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(a) (b) 

 

Figure 4.21: In EDFM approach, all the connections of a fracture cell are treated as non-

neighboring connections. In this example, (a) a gridblock is intersected by 

two different fracture planes f and f  . (b) Hence, the blue fracture cell is 

connected to one matrix gridblock, one fracture cell from other plane (green 

plane), and three neighboring cells of the same fracture plane. 

 

Since non-neighboring connections are modeled as the extra directions for fluid 

flow, all the parameters and operators that are somehow a function of direction must be 

modified. In general, operators such as divergence   and gradient   calculate a form 

of derivative of a desired function with respect to each direction. If we assume that F  is 

a three-dimensional vector function with components xF , yF , and zF  in the 

corresponding directions, and g  is a scalar function, then the definition of divergence 

and gradient are as follows, respectively. 



 72 

.
yx z

FF F
F

x y z

 
   

  
                                                                                         (4.17) 

 

.
f f f

f i j k
x y z

  
   

  
                                                                                           (4.18) 

 

However, for the matrix gridblocks intersected by fracture planes, the above equations 

are not adequate anymore, because they do not include the fluid transfer between the 

matrix gridblocks and the corresponding fracture cells. To solve this issue for non-

neighboring connections, extra terms are added to these equations. The number of these 

extra terms is equal to the number of non-neighboring connections for every cell 

(including both matrix and fracture cells). Eqs. (4.19) and (4.20) show the modifications 

made to the previous equations, where nncN  is the number of non-neighboring 

connections for every control-volume in the computational domain and if  is the i th  

direction of NNCs.  
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For fracture cells, the same formulations are applied without the terms in X-, Y-, and Z- 

directions, because all of the connections for fracture cells are accounted as NNC.  

 In addition to the above operators, calculation of a number of parameters is a 

function of direction as well. When pressure and mass balance PDEs are discretized using 
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a numerical method, a number of properties are calculated at the interface between two 

adjacent gridblocks. These properties are called block-face or inter-block properties. To 

compute the value of the inter-block properties, several averaging techniques have been 

proposed which consist of values of that property in the neighboring cells with different 

weighting factors. However, to increase the stability of the numerical solution, an 

appropriate averaging method must be selected. Although, higher-order methods are 

available in UTCOMP and UTGEL, the one-point upstream weighting (upwind 

weighting) is considered for the approximation of inter-block properties for matrix-

fracture or in general non-neighboring connections. To do so, Eqs. (4.21a) and (4.21b) 

are applied based on the phase potential in the adjacent cells. For example, suppose X  is 

an inter-block property between a matrix block and a fracture cell, then the approximated 

value for X  would be its value at the upstream cell. This process is repeated for all the 

other directions of NNCs. In pressure and mass conservation equations, the properties 

that are treated in this way are: molar density of phase j  (
j ), mole fraction of 

component i  in phase j  ( ijx ), and relative mobility of phase j  ( rj ) for the UTCOMP 

simulator, and volume concentration of component   in phase l  (
l

C
), and relative 

mobility of phase l  (
rl
 ) for the UTGEL simulator. 

  

mm f
X X


                         .m fif                                                           (4.21a) 

 

m f fX X                          .f mif                                                           (4.21b) 

 

 To develop the final form of the governing equations, we neglect the dispersion 

term. Also, we assume that the process is isothermal and therefore there is no need to 

solve the energy balance equation. If we apply these simplifications, we obtain the 
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following pressure and mass balance equations for UTCOMP-EDFM and UTGEL-

EDFM simulators (Eqs. (4.22) to (4.25)). Since index notations are used in these 

equations, no difference is observed compared to the original equations described in the 

previous chapter. However, as mentioned above, several modifications are necessary to 

derive the inter-block properties and also to expand the mathematical operators. To 

highlight these changes, the block-face properties and the operators are shown in blue and 

red, respectively, in the following equations.  

 

UTCOMP-EDFM Simulator: 
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UTGEL-EDFM Simulator: 
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Chapter 5: Model Verification 

 

  In every reservoir simulation development project, the step after modeling (or 

deriving the mathematical formulation) and implementation (or coding) is the 

verification. To examine the accuracy and robustness of new models or tools, verification 

against existing numerical or analytical solutions is an essential task. Although it is 

impossible to cross-check the model with all the available examples, testing against 

general and more technical problems is very important.  

 In this chapter, the implemented EDFM approach in UTCOMP and UTGEL 

reservoir simulators is compared against a few numerical simulation problems as well as 

one semi-analytical solution. To start with, the EDFM result is compared against a fine-

grid simulation problem with simple fractures. For cases with more complex fracture 

geometries and configurations, two examples from Moinfar (2013) are selected. Finally, 

to check the accuracy of model in well-fracture intersection, with application in studying 

hydraulic fractures, the results are compared against a semi-analytical solution of the 

diffusion equation, developed by Zhou et al. (2014) and Wei et al. (2014). 

 

5.1 FINE-GRID SIMULATION 

 As the first case for verification, a 2D reservoir model is specified with simple 

fracture planes. The EDFM results in UTCOMP and UTGEL are tested against the fine-

grid simulation. To simply setup the reservoir model and to generate the fractures 

explicitly, a single size gridblock is used to construct the fine-grid model. Also, all the 

three fractures are set to be vertical and placed parallel to the reservoir boundaries to 

make gridding more straightforward. The reservoir model and the location of fractures 
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are shown in Figure 5.1(a). In this example, two of the fractures are intersected, whereas 

the other one is isolated. To study the grid sensitivity in EDFM approach, four cases with 

different gridblock sizes are constructed. The grid size and the dimensions of the 

gridblocks for all the cases are summarized in Table 5.1. As an illustration of EDFM 

setup, the reservoir model for the 20×20 grid with the three fractures is shown in Figure 

5.1(b). As a reminder, the fractures are embedded inside the matrix grid, and no grid 

refinement is performed close to the fractures. The injector is located at one corner 

injecting water at the rate of 0.5 STB/D, and the producer is at the opposite corner 

operating at constant BHP of 3000 psi. The hydrocarbon is single component (C10H22) 

and the reservoir pressure is above the bubble point. Also, the capillary pressure effect is 

neglected in this example. The other reservoir rock and fluid properties are summarized 

in Table 5.2.   

 Figures 5.2 and 5.3 show the oil and water production rates for the reservoir 

model after 400 days. The EDFM approach is tested with different grid sizes: 10×10, 

20×20, 50×50, and 100×100. As observed from the figures, the 50×50 case achieves very 

similar results compared to the fine-grid simulation. However, if we compare the 

simulation run times, presented in Table 5.3, the EDFM-50×50 case is faster than fine-

grid model 113 and 123 times in UTCOMP and UTGEL simulators, respectively. This 

improvement would be even more significant for more complicated fracture networks. 

All of the simulation runs were performed using one processor of Petros cluster, which 

has 16 GB of memory on each computing node. This Linux cluster is owned by The 

Center for Petroleum and Geosystems Engineering (CPGE) at The University of Texas at 

Austin. Finally, to compare the water saturation profiles, Figure 5.4 indicates the water 

invasion maps after 96 and 168 days for the fine-grid and the EDFM approach in 

UTCOMP and UTGEL for the 50×50 grid. Again, very good agreement is observed 
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between all the three models. 

 

 

(a) 

 

 

(b) 

Figure 5.1: A reservoir model with 3 vertical fractures: (a) Map view of the reservoir 

and the location of fractures. (b) The 20×20 grid used in the EDFM 

approach. The reservoir thickness has magnified 20 times for a better 

illustration.   
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Fine-Grid 

EDFM 

Case 1 Case 2 Case 3 Case 4 

Grid Size (x × y × z) 200×200×1 10×10×1 20×20×1 50×50×1 100×100×1 

Gridblock Dimensions  

(Δx(ft) × Δy(ft) × Δz(ft)) 
0.5×0.5×0.5 10×10×0.5 5×5×0.5 2×2×0.5 1×1×0.5 

Number of  

Fracture Cells 
300 15 30 75 150 

Table 5.1: Gridding information for the Fine-grid and EDFM simulations is presented 

in this table. Four different cases are considered for grid sensitivity.  

 

Overall Properties Relative Permeability Curves 

Matrix Porosity (fraction) 0.2 Irreducible Water Saturation 0.2 

Matrix Permeability (md) 20 Water Rel. Perm. End Point 0.8 

Fracture Permeability (md) 10000 Water Rel. Perm. Exponent 4 

Fracture Aperture (ft) 0.5 Residual Oil Saturation 0.2 

Initial Reservoir Pressure (psi) 3000 Oil Rel. Perm. End Point 0.7 

Initial Water Saturation 0.2 Oil Rel. Perm. Exponent 2 

Initial Oil Saturation 0.8 C10H22 Properties 

Reservoir Temperature (°F) 60 Critical Pressure (psia) 350 

Rock Compressibility (psi
-1

) 5.00E-06 Critical Temperature (°R) 1500 

Fluid Compressibility (psi
-1

) 0 Molecular Weight (lb/lb-mole) 142.23 

Well Properties Parachor 431 

Well Radius (ft) 0.35 Acentric Factor 0.488 

Producer BHP (psi) 3000 Water Viscosity (cp) 0.8 

Injector Rate (STB/D) 0.5 Oil Viscosity (cp) 0.19 

Table 5.2: Rock and fluid properties for the reservoir model in section 5.1  

 

 
Fine-Grid 

UTCOMP-EDFM UTGEL-EDFM 

10×10 20×20 50×50 100×100 10×10 20×20 50×50 100×100 

Simulation 

Time 

(minutes) 

1071 0.08 0.47 9.48 108 0.05 0.42 8.7 110 

Table 5.3: Simulation run times for the examples presented in section 5.1  
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(a) 

 

 

(b) 

Figure 5.2: (a) Oil and (b) water production rates for UTCOMP-EDFM and the fine-

grid models. Four cases with different gridblock sizes are considered for 

EDFM. The 50×50 case is the optimum one.  
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(a) 

 

 

(b) 

Figure 5.3: (a) Oil and (b) water production rates for UTGEL-EDFM and the fine-grid 

models. Four cases with different gridblock sizes are considered for EDFM. 

The 50×50 case is the optimum one.  
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                    (a)                                                                    (b) 

Figure 5.4: Water saturation profiles for the reservoir model after (a) 96 days (left 

column) and (b) 168 days (right column).  The rows from top to bottom 

show the water saturation profiles for the fine-grid, UTCOMP-EDFM, and 

UTGEL-EDFM, respectively.  
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5.2 ARBITRARY ORIENTED FRACTURES 

 One of the main capabilities of EDFM approach is modeling fractures with 

arbitrary orientations and dip angles, which provides more degree of freedom in defining 

realistic and complex fracture networks. However, to verify these capabilities, the fine 

grid simulation is not applicable anymore. If not impossible, it would be very tedious to 

setup the fine-grid simulation for non-aligned dip-angled fractures, while it would be 

very simple for EDFM to do so. Thus, to validate the further applications of the 

implemented model in UTCOMP and UTGEL, the earlier development of EDFM in 

GPAS reservoir simulator is used. Moinfar (2013) carried out the similar project as part 

of his PhD work, and presented several examples of these kinds in his dissertation.  In the 

current and the following section, UTCOMP-EDFM and UTGEL-EDFM are compared 

with two of the examples from Moinfar (2013). 

Figure 5.5 illustrates a 2D reservoir model with 14 randomly oriented vertical 

fractures. These fractures or channels represent the naturally occurred fissures and 

openings in fractured reservoirs. In this example, the grid is 20×20×1 and the gridblock 

dimensions are 25, 25, and 20 ft in X-, Y-, and Z-directions, respectively. Due to 

discretization of the fracture planes with gridblock boundaries, an overall 156 fracture 

cells are created and added to the computational domain. Table 5.4 describes the matrix, 

fracture, and the fluid properties. In this case study, the water is injected at one corner at 

the rate of 100 STB/D and oil is produced at the opposite corner through the production 

well. One feature examined in this example is the variation of relative permeability 

curves between fracture and matrix domains. While the straight line curves are used for 

fracture cells, the relative permeability in matrix domain is computed with the Corey 

model based on the parameters given in Table 5.4.  However, it is possible to choose 

other permeability curves for fractures as well. 
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(a) 

 

 

(b) 

Figure 5.5: A reservoir model with 14 vertical fractures with various orientations (from 

Moinfar (2013)). (a) Map view of the reservoir and the location of fractures 

(b) The 20×20 grid used in the EDFM approach.  
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Overall Properties Relative Permeability Curves for Matrix 

Matrix Porosity (fraction) 0.1 Irreducible Water Saturation 0.2 

Matrix Permeability (md) 20 Water Rel. Perm. End Point 0.8 

Fracture Permeability (md) 700000 Water Rel. Perm. Exponent 4 

Fracture Aperture (ft) 0.025 Residual Oil Saturation 0.2 

Initial Reservoir Pressure (psi) 3000 Oil Rel. Perm. End Point 0.7 

Initial Water Saturation 0.2 Oil Rel. Perm. Exponent 2 

Initial Oil Saturation 0.8 C10H22 Properties 

Reservoir Temperature (°F) 60 Critical Pressure (psia) 350 

Rock Compressibility (psi
-1

) 0 Critical Temperature (°R) 1500 

Fluid Compressibility (psi
-1

) 0 Molecular Weight (lb/lb-mole) 142.23 

Well Properties Parachor 431 

Well Radius (ft) 0.5 Acentric Factor 0.488 

Producer BHP (psi) 3000 Water Viscosity (cp) 0.8 

Injector Rate (STB/D) 100 Oil Viscosity (cp) 0.19 

Table 5.4: Rock and fluid properties for the reservoir model in section 5.2. The relative 

permeability curves are straight lines for the fractures. 

Figure 5.6 compares the oil production rates of UTCOM-EDFM and UTGEL-

EDFM simulations with the simulation data obtained from GPAS (Moinfar (2013)). As 

can be seen, there is an excellent agreement between the results which verifies the 

accuracy of the implementation for fractures with various orientations. Also, Figure 5.7 

illustrates the water saturation profiles (invasion profiles) for all the three simulation 

cases after 150 and 250 days. Since the color bar distribution of the results shown from 

Moinfar (2013) is not identical with the one used for UTCOMP and UTGEL outputs, the 

gridblocks with same saturations do not have matching colors. However, if you consider 

the saturation values for corresponding gridblocks, they are almost equal. Also, as 

observed from the figure, the invasion patterns are almost identical. 
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Figure 5.6: Comparison of oil production rates obtained from UTGEL-EDFM and 

UTCOMP-EDFM with Moinfar (2013) results for a 2D reservoir model 

with 14 fractures with various orientations. 
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(a) (b) 

Figure 5.7: Water saturation profiles for the model reservoir after (a) 150 days (left 

column) and (b) 250 days (right column).  The rows from top to bottom 

show the water saturation profiles for Moinfar (2013), UTCOMP-EDFM, 

and UTGEL-EDFM, respectively. 
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 5.3 INCLINED FRACTURES 

 After verification of fractures with various orientations, in this section we 

investigate the model accuracy for dip-angled fractures in a 3D reservoir model. Due to 

alteration of stress regimes with respect to depth, and tectonic movements, there is a high 

possibility for natural and induced fractures to propagate obliquely with respect to 

vertical direction. Although in most of the commercial simulators the study of inclined 

fractures is not allowed, EDFM approach provides this capability. 

 We use a 3D case study with 4 layers, from Moinfar (2013), to validate the 

simulators for inclined fractures.  The reservoir model has 13 fractures with different dip 

angles ranging from 55 to 90 degrees. Figure 5.8 depicts the map and the slanted views of 

the reservoir and the location of the fractures. A number of the fractures have partially 

penetrated the reservoir and intersect only one or two layers. The matrix grid is 20×20×4 

and 450 fracture cells are added to the computational domain due to fractures 

discretization. The water is injected at the rate of 1000 STB/D through the perforations in 

all the layers. The reservoir pressure as well as producer BHP is 5000 psi. Fractures 

permeability is 300,000 md, and matrix permeability is 15, 15, and 2 md in X-, Y-, and 

Z-directions, respectively. Straight line relative permeability curves with zero residual 

saturations are used for fractures, while Corey relative permeability model is applied for 

rock matrix. The rest of the rock and fluid properties are similar to those in Table 5.2.  

 Figure 5.9 compares the oil production rates obtained from UTCOMP-EDFM and 

UTGEL-EDFM with the same simulation result from Moinfar (2013). Based on the 

figure, a perfect agreement is observed between the results. Moreover, if we compare the 

water saturation profiles after 80 days for all the layers in Figure 5.10, again we can 

observe good agreement. Due to partial penetration and the effect of fractures in 

magnifying the gravity effects, the sweep patterns are different between the layers. 
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Although different color bars are reported for Moinfar results and our post processor, the 

invasion patterns and the saturation values of the corresponding gridblocks are identical. 

 

 

(a) 
 

 

(b) 

Figure 5.8: A 3D reservoir model with 13 inclined fractures (from Moinfar (2013)). (a) 

Map view of the reservoir and the location of fractures. (b) The 20×20×4 

grid used in the EDFM approach. 
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Figure 5.9: Comparison of oil production rates obtained from UTGEL-EDFM and 

UTCOMP-EDFM with Moinfar (2013) results for a 3D reservoir model 

with 13 inclined fractures. 
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                       (a)                                            (b)                                           (c) 

Figure 5.10: Water saturation profiles for (a) Moinfar (2013), (b) UTCOMP-EDFM, and 

(c) UTGEL-EDFM after 80 days. In each column, saturation profiles are 

shown for the 4 layers, starting from the top layer at the top to the bottom 

layer at the bottom. 
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5.4 WELL-FRACTURE INTERSECTION (SEMI-ANALYTICAL SOLUTION) 

 Several analytical and semi-analytical solutions have been proposed in the 

petroleum literature (Chen and Raghavn (1997), Cinco-Ley et al. (1978)) to study the 

transient gas flow behavior in hydraulically fractured reservoirs. To develop such 

solutions, often simple geometries, such as bi-wing vertical fractures, are assumed for 

hydraulic fractures. However, a semi-analytical method has been developed recently by 

Zhou et al. (2014) to simulate more complex fracture networks. Based on this approach, 

pressure in every point in the reservoir is calculated based on an analytical solution of the 

diffusion equation and the superposition of pressure drawdowns with respect to each 

fracture panel. Fracture panels are considered as plane-sources. Consequently, Eq. (5.1) is 

derived for pressure at every point in the reservoir, where ( , , , )p x y z t  is pressure at point 

( , , )x y z and time t , 
0( )U t t  is Heaviside’s unit step function,   is porosity, tc  is total 

compressibility, a  is reservoir length, b  is reservoir width, jq  is flux to fracture panel j , 

pN  is the number of fracture panels, and ( , , , )G x y z t  is the instantaneous plane-source 

solution of the j -th fracture panel which is presented in the Appendix. The fractures are 

discretized into panels (Figure 5.11) and the mass balance equation combined with 

Darcy’s law is numerically solved to find the rate in the fracture network. Eq. (5.2) 

represents the pressure at each fracture panel center where 1jp  is pressure at the panels 

intersection,   is viscosity, fk  is fracture permeability,   is fluid density, fb  is 

fracture width, d  is fracture thickness, 
fj

q  is flux from matrix to fracture, 1jq  is 1D flux 

along the fracture, and   is non-Darcy Forchheimer coefficient. In general, the reservoir 

is homogenous and the fluid is slightly compressible. The detailed information is found in 

Zhou et al. (2014) and Thambynayagam (2011).  
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Figure 5.11: Schematic of fracture network discretization used in the semi-analytic 

solution of unsteady state gas flow in unconventional reservoirs, developed 

by Zhou et al. (2014). 

 

Later, Wei et al. (2014) applied the same formulation to study gas production 

from complex fracture networks considering gas desorption. In their work, they 

investigated several hydraulic fracture network configurations, such as multiple vertical 

fractures, varying half-length fractures, and inclined hydraulic fractures. To validate the 
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well-fracture intersection in our model, one of the presented case studies in Wei et al. 

(2014) is selected. This example includes a horizontal well with 4 hydraulic fractures 

intersecting the well at 60 degree as shown in Figure 5.12. The fractures half-length is 

305 ft and the spacing is 100 ft. Since the non-Darcy flow and gas desorption are not 

available in UTCOMP-EDFM, we compare the results with a case where 0   and gas 

desorption is neglected. Moreover, this validation is only presented for UTCOMP-EDFM 

since modeling of gas phase is not allowed in UTGEL. However, the same methodology 

and formulation are applied in implementing well-fracture intersection in UTGEL-EDFM 

as well. In this simulation, in order to get more accurate results, the matrix grid is set to 

be 101×101×1 with gridblock dimensions of 19.8, 19.8, and 80 ft in X-, Y-, and Z-

directions, respectively.  Due to fractures discretization, 168 fracture cells are created in 

total. Additional reservoir and fluid properties are given in Table 5.5.  

 

 

Figure 5.12: A reservoir model with 4 hydraulic fractures. The hydraulic fractures (red 

lines) intersect the horizontal well (black line) at 60 degree.  
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Overall Properties CH4 Properties 

Matrix Porosity (fraction) 0.15 Critical Pressure (psia) 667.38 

Matrix Permeability (md) 0.0005 Critical Temperature (°R) 343.68 

Fracture Permeability (md) 10000 Molecular Weight (lb/lb-mole) 16 

Fracture Aperture (ft) 0.01 Parachor 71 

Initial Reservoir Pressure (psi) 4500 Acentric Factor 0.008 

Initial Water Saturation 0.1 Gas Viscosity (cp) 0.023536 

Initial Gas Saturation 0.9 Gas Specific Gravity 0.58 

Reservoir Temperature (°F) 130 Well Properties 

Rock Compressibility (psi
-1

) 0.000001 Well Radius (ft) 0.5 

Fluid Compressibility (psi
-1

) 0.00014 Well BHP (psi) 1000 

Table 5.5: Rock and fluid properties for the reservoir model in section 5.4. 

 

Figure 5.13 shows the gas flow rate comparison between the semi-analytical 

solution and UTCOMP-EDFM. As observed, there is good agreement between the 

results, corroborating the accuracy of the implementation of well-fracture intersection. 

Moreover, the pressure profiles after 350 and 1500 days of gas production is illustrated in 

Figure 5.14.  Fractures interference starts almost at 350 days, resulting in a production 

decrease compared to the simulation of 4 distinct hydraulic fractures. If we keep the 

fracture spacing constant, as the intersection angle decreases from 90 to 0 degree, 

fractures interference increases. Thus, the best practice is to drill horizontal wells parallel 

to the direction of minimum horizontal stress so that the hydraulic fractures propagate at 

90 degree with respect to the well. However, due to heterogeneity of the reservoir and the 

uncertainty in the direction of stresses, often fractures develop at inclined angles and in 

the form of complex networks. Thus, modeling such features using bi-wing fracture 

models might not be accurate.  
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Figure 5.13: Comparison of gas flow rate obtained from UTCOMP-EDFM with the 

semi-analytical solution for a 2D reservoir model with 4 hydraulic fractures 

intersecting well at 60 degree. 

 

 

(a) (b) 

Figure 5.14: Pressure profiles after (a) 350 and (b) 1500 days for the reservoir model in 

section 5.4. The fractures interference starts almost at 350 days. 
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Chapter 6: Applications of UTCOMP-EDFM and UTGEL-EDFM 

 

This chapter presents several simulation case studies with the implemented 

EDFM approach in UTCOMP and UTGEL reservoir simulators. These examples are 

specified and presented to highlight the capabilities of these simulators in modeling more 

complex problems compared to those modeled with available commercial reservoir 

simulators. In the first two sections, UTCOMP-EDFM is applied to study the behavior of 

natural and induced fracture networks. First, we investigate the effect of well placement 

and the background fracture networks on the efficiency of water flooding. The same 

simulation runs are then performed with inclusion of the capillary imbibition effects. The 

results confirm the significance of capillary effects on hydrocarbon production, although 

these effects are neglected in most of simulation practices. In the last part of this chapter, 

two examples of conformance control techniques are presented in which UTGEL-EDFM 

is employed to model such processes. It is indicated that injecting high viscosity polymer 

gels into channels and conduits can significantly increase sweep efficiency, which in turn 

can further improve recovery factor. 

 

6.1 WATER FLOODING IN FRACTURED RESERVOIRS 

 Naturally fractured reservoirs are characterized by one or more sets of fracture 

networks. These networks are accounted as highly conductive pathways for oil and water 

transfer in the formation. The performance of such reservoirs is governed mainly by the 

configuration of the fracture networks. Thus, modeling and simulation of fractured 

reservoirs leads to erroneous results without accurate characterization of fracture 

networks. Moreover, the wettability condition of the reservoir rock itself plays an 
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important role in the success of a water flooding job as well. Favorable rock wettability 

can introduce capillary pressure contrast between fracture and matrix, which improves 

sweep efficiency and oil recovery. However, in the absence of capillary pressure effects, 

water flows mostly in a network of high permeability fractures and reaches production 

wells without displacing considerable amount of oil. Although numerous laboratory core 

flood experiments have been performed to understand the behavior of natural fractured 

reservoirs, the accurate prediction of reservoir performance still remains a challenge. In 

the following section, we investigate the effect of fracture networks complexity and 

capillary pressures using simulation case studies. First, the effect of well placement with 

respect to the background fracture network on reservoir performance is investigated. 

Capillary pressures are then added to the simulations to observe their significance. For all 

the simulations in this section, we use UTCOMP-EDFM simulator. 

 

6.1.1 Well Placement 

 When a water flooding plan is designed for a naturally fractured reservoir, it is 

vital to determine the configuration of the background fracture network using geologic 

and geomechanics studies. This information further assists in well placement and 

completion design. To show the importance of such information, a series of simulation 

case studies is presented where several fracture networks are considered.  

 First, we investigate the effect of well placement in a 2D reservoir containing a 

network of 22 fractures. The fractures have a preferential orientation as shown in Figure 

6.1. The matrix grid is 50×50×1 and the dimensions of each gridblock are 40 ft in all the 

directions. Due to discretization of the fracture planes, a total of 420 cells are added to the 

computational domain. Water is injected at a rate of 7000 STB/D. The BHP for producer 
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as well as the reservoir pressure is 3000 psi. The other rock and fluid properties are 

summarized in Table 6.1. To study the effect of network orientation, two different sets of 

well placements are considered for the injector and the producer. In the first case, the 

injector is located at the bottom left corner and the producer at the top right corner. We 

refer to this configuration as SW-NE, where the line connecting injector and producer is 

parallel to the fractures orientation. In the second case, we use the SE-NW configuration 

in which the line connecting these two wells is perpendicular to the fractures orientation. 

The locations of wells in these two cases are shown in Figure 6.1. The first and second 

sets of wells are shown with blue and red circles, respectively. 

 

 

 

Figure 6.1: A reservoir model with a network of 22 fractures with preferential 

orientation. The effect of well placement is considered in this example. In 

the first case, injector-producer line is parallel to the SW-NE direction (blue 

circles), while for the second case, the line is in the SE-NW direction (red 

circles). 
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Overall Properties Relative Permeability Curves for Matrix 

Matrix Porosity (fraction) 0.2 Irreducible Water Saturation 0.2 

Matrix Permeability (md) 15 Water Rel. Perm. End Point 0.8 

Fracture Permeability (md) 100000 Water Rel. Perm. Exponent 4 

Fracture Aperture (ft) 0.025 Residual Oil Saturation 0.2 

Initial Reservoir Pressure (psi) 3000 Oil Rel. Perm. End Point 0.7 

Initial Water Saturation 0.2 Oil Rel. Perm. Exponent 2 

Initial Oil Saturation 0.8 C10H22 Properties 

Reservoir Temperature (°F) 60 Critical Pressure (psia) 350 

Rock Compressibility (psi
-1

) 0.000001 Critical Temperature (°R) 1500 

Fluid Compressibility (psi
-1

) 0.000005 Molecular Weight (lb/lb-mole) 142.23 

Well Properties Parachor 431 

Well Radius (ft) 0.5 Acentric Factor 0.488 

Producer BHP (psi) 3000 Water Viscosity (cp) 0.8 

Injector Rate (STB/D) 7000 Oil Viscosity (cp) 0.19 

 
Table 6.1: Rock and fluid properties of the reservoir model in section 6.1. The relative 

permeability curves are straight lines for fractures. 

 Figures 6.2 to 6.4 illustrate the simulation results for the reservoir model with two 

different well placements. As observed from the plots, although the reservoir properties 

remain constant, by merely changing the location of injector and producer, a completely 

different behavior is displayed by the reservoir. As expected, when water is injected 

parallel to fractures direction, breakthrough occurs much faster resulting in poor sweep 

efficiency and lower oil recovery. In this example, for the SW-NE case, water reaches the 

producer 200 days earlier compared to the other case, and recovery decreases more than 

10 percent. Moreover, if we compare the water saturation profiles for both cases at 150 

and 350 days, as shown in Figure 6.5, it is evident that when the water front moves 

perpendicular to the fractures direction, the effect of fracture network is almost negligible 

and saturation profile is similar to that of a homogenous reservoir without fractures. This 

clearly indicates the significance of background fracture network on the performance of 

reservoir. 
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Figure 6.2: Oil production rates for the reservoir model with a network of 22 fractures. 

Results are shown for two different well placements. 

 

 

Figure 6.3: Water production rates for the reservoir model with a network of 22 

fractures. Results are shown for two different well placements. 
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Figure 6.4: Oil recovery for the reservoir model with a network of 22 fractures. Results 

are shown for two different well placements. 
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                        (a)                                                                    (b) 

Figure 6.5: Water saturation profiles for the reservoir model with a network of 22 

fractures after 150 days (top row) and 350 days (bottom row). Results are 

shown for two different well placements, (a) SW-NE and (b) SE-NW. 

 

In fractured reservoirs, mostly there are more than one set of fracture network. 

Depending on the geomechanical condition and tectonic movements, these networks may 

have different orientations and dip angles. In such reservoirs, the accurate 

characterization of individual fracture networks becomes very troublesome. However, if 

the number of networks increases, due to high density of fractures and variation of their 
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orientations, it is difficult to find a specific direction as the outcome of all the sets. Thus, 

reservoir performance becomes less sensitive to the well placement. To evaluate this 

conjecture, another fracture network is added to the previous reservoir model as shown in 

Figure 6.6. Including the new network, a total of 39 fracture planes and 747 fracture cells 

are modeled in this problem. The fractures in the new network (green lines) are almost 

perpendicular to the former fractures (red lines). Similar to the previous section, two 

scenarios for well placement are investigated. First, injector is inserted at the bottom left 

corner while the producer is at the opposite corner. This set of injector and producer is 

shown with blue circles in Figure 6.6 and are referred to as SW-NE configuration. The 

locations of injector and producer are then changed to SE-NW direction as shown by red 

circles. The other reservoir and fluid properties are the same as those of the previous 

reservoir model.  

 

 

Figure 6.6: A reservoir model with 2 networks of 39 fractures. The effect of well 

placement is considered in this example. In the first case, injector-producer 

line is parallel to the SW-NE direction (blue circles), while for the second 

case, the line is in the SE-NW direction (red circles).  
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Figures 6.7 to 6.9 depict the simulation results for the reservoir model with two 

fracture networks. As observed from the plots, the difference between the curves for the 

two well placement scenarios has decreased significantly compared to the case of the 

reservoir model with one fracture network, although still some discrepancy is evident in 

later times. Figure 6.7 indicates that water breakthrough has occurred 30 days earlier in 

SW-NE configuration compared to the other well placement, while this gap was about 

200 days in the previous example. Also, the oil recovery factors are close to each other 

for the two-networks example, confirming the fact that multiple fracture networks tend to 

make reservoir more isotropic compared to the case of one fracture network with 

preferential direction. In fact, although the connectivity and proximity (spacing) of 

individual fractures differ from one network to another, their combination behaves almost 

similarly in various directions. This effect becomes more evident as the number of 

fracture networks increases. This is why the dual continuum approaches are sufficiently 

accurate for modeling dense fractured reservoirs. 

Moreover, based on the water saturation profiles shown after 130 and 360 days 

for both scenarios (Figure 6.10), we can observe that water invasion patterns are closely 

matched compared to Figure 6.5. Although the front movement is mainly controlled by 

the network parallel to the direction of flow, still the same behavior is observed for both 

cases, which is completely distinct from the one shown in Figure 6.5b.   

According to the above discussions, we can conclude that not only the properties 

of individual fracture networks must be studied for well placement and further reservoir 

development, fracture networks interaction must also be taken into account as well. 

Although the existence of multiple fracture networks might seem to complicate the 

problem, their combination can eliminate the directionality associated with individual 

fractures, as long as they possess similar properties, such as fractures permeability.    
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Figure 6.7: Oil production rates for the reservoir model with two sets of fracture 

networks. Results are shown for two different well placements. 

 

 

Figure 6.8: Water production rates for the reservoir model with two sets of fracture 

networks. Results are shown for two different well placements. 
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Figure 6.9: Oil recovery for the reservoir model with two sets of fracture networks. 

Results are shown for two different well placements. 
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                            (a)                                                               (b) 

Figure 6.10: Water saturation profiles for the reservoir model with two fracture networks 

after 130 days (top row) and 360 days (bottom row). The results are shown 

for two different well placements, (a) SW-NE and (b) SE-NW. 

 

6.1.2 Capillary Pressure Effect 

 In water-wet fractured reservoirs, capillary imbibition appears to be one of the 

most important mechanisms for oil production, compared to viscous displacement. Due 

to distribution of highly conductive fractures throughout the reservoir, the injected fluid 

travels between injectors and producers without displacing considerable amount of oil, 
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bypassing significant portions of a reservoir. Thus, viscous displacement alone is not an 

efficient mechanism for oil production in fractured reservoirs. However, the presence of 

capillary imbibition effects, mostly in water-wet rocks, improves the sweep efficiency 

and therefore results in higher recovery factors. Water is spontaneously imbibed into the 

rock matrix, the main storage domain, and pushes oil out to the fracture system, the main 

conductive path. It has been shown that fracture system provides a path for the injected 

fluid to access larger un-swept regions. In fact, fracture network increases the contact 

area of the wetting phase and the rock matrix which in turn maximizes the capillary 

imbibition effects. However, the impact of various fracture network configurations on 

capillary pressure effects has not been well studied. In this section, the presented 

examples in the preceding part are investigated again under capillary imbibition effects to 

determine the importance of the network configuration on such processes. Moreover, 

different values for capillary pressure parameters are considered to evaluate their impact 

on ultimate oil recovery.  

In UTCOMP, the capillary pressure between water and oil phases is calculated 

based on Eq. (6.1) where c
woP  is capillary pressure, pcC  and pcE  are matching 

parameters, wo  is oil-water interfacial tension,   is porosity, k  is permeability, and wS  

is normalized water saturation. In the following case studies, two sets of parameters are 

considered, as given in Table 6.2, and are referred to as Pc
1 

and Pc
2
. The capillary 

pressure effect is more significant in Pc
2 

compared to Pc
1
. For a medium water-wet rock, 

we use Pc
1
, while Pc

2 
is applied for a strongly water-wet rock matrix. 

 

 1 .
EpccP C Swo pc wo wk


                                                                              (6.1) 
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  Cpc Epc σwo (dynes/cm) 

Pc
1 

10 1 50 

Pc
2 

60 1.5 60 

Table 6.2: Two sets of parameters for capillary pressure calculations. The second set 

results in strong capillary pressure effects. 

To determine the impact of capillary pressure on oil production, the reservoir 

model in Figure 6.1 (with a network of 22 fractures) is selected. Two simulation runs are 

performed with different sets of capillary pressure parameters as given in Table 6.2, and 

the results are compared to the case where capillary pressure is neglected. Figures 6.11 to 

6.13 show the results for the SW-NE well placement. For this well configuration, since 

injection is made parallel to the direction of fractures, water is transferred faster by the 

fracture network. As a result, water contacts a larger portion of the reservoir and imbibes 

into the rock matrix more efficiently, which in turn increases the sweep efficiency and the 

oil recovery. Moreover, if we compare the water production plots (Figure 6.12), it is 

evident that by increasing the capillary pressure effects, the water breakthrough time is 

delayed, because the imbibition takes some water out of high permeability fractures and 

therefore limits the front movement in the fracture system toward the producer. Figure 

6.14 shows this concept with the water saturation profiles for all the cases at 300 days. In 

overall, for the SW-NE well configuration capillary pressure has positive effects. 

However, for the SE-NW well placement, the capillary imbibition has almost no 

effect on reservoir performance (Figures 6.15 to 6.17). Due to the direction of water front 

movement and the orientation of fractures, the network has no influence on fluid flow, 

and thus water invasion follows a simple pattern (Figure 6.5b). As mentioned above, 

capillary imbibition process is controlled by the fracture network. Hence, since the 

background fracture network is neutral in this case, capillary effects are negligible too. 
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Figure 6.11: Oil production rates for the reservoir model with one set of fracture network 

and the SW-NE well placement. Results are shown for two cases with 

different capillary pressure values as well as one case with no capillary 

pressure.  

 

Figure 6.12: Water production rates for the reservoir model with one set of fracture 

network and the SW-NE well placement. Results are shown for two cases 

with different capillary pressure values as well as one case with no capillary 

pressure. 
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Figure 6.13: Oil recovery for the reservoir model with one set of fracture network and the 

SW-NE well placement. Results are shown for two cases with different 

capillary pressure values as well as one case with no capillary pressure. 

 

 

 

                        (a)                                           (b)                                           (c) 

Figure 6.14: Water saturation profiles at 300 days for the reservoir model with one set of 

fracture network. Profiles are shown for (a) no capillary pressure, (b) Pc
1
, 

and (c) Pc
2
 cases. 
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Figure 6.15: Oil production rates for the reservoir model with one set of fracture network 

and the SE-NW well placement. Results are shown for two cases with 

different capillary pressure values as well as one case with no capillary 

pressure. 

 

Figure 6.16: Water production rates for the reservoir model with one set of fracture 

network and the SE-NW well placement. Results are shown for two cases 

with different capillary pressure values as well as one case with no capillary 

pressure. 
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Figure 6.17: Oil recovery for the reservoir model with one set of fracture network and the 

SE-NW well placement. Results are shown for two cases with different 

capillary pressure values as well as one case with no capillary pressure. 
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imbibition effects. To do so, capillary pressure parameters of Pc
2
 are applied. Figures 

6.18 to 6.20 illustrate the simulation results for the two well configurations. As we can 

see, the difference between two curves has decreased considerably with respect to the 

comparison made under no capillary pressure condition (Figures 6.7 to 6.9). Thus, it 

implies that capillary imbibition effects flatten the drastic changes in the water front due 

to the existence of highly conductive pathways, such as fractures or channels. The 

concept is somehow similar to the effect of capillary pressure on viscosity fingering in 

which high imbibition effects tend to stabilize the front and therefore reduce the 

corresponding effect of heterogeneities. Accordingly, Figure 6.21 presents the water 

saturation profiles for the two well placement scenarios with and without capillary 

pressure considerations. The profiles are shown at 220 days. As can be seen, at high 

capillary pressure effects, the water channelings vanish. 

 

 

Figure 6.18: Oil production rates for the reservoir model with two sets of fracture 

networks under high capillary pressure effects (Pc
2
). Results are shown for 

two different well placements. 
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Figure 6.19: Water production rates for the reservoir model with two sets of fracture 

networks under high capillary pressure effects (Pc
2
). Results are shown for 

two different well placements. 

 

 

Figure 6.20: Oil recovery for the reservoir model with two sets of fracture networks 

under high capillary pressure effects (Pc
2
). Results are shown for two 

different well placements. 
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(a) (b) 

Figure 6.21: Water saturation profiles at 220 days for the reservoir model with two sets 

of fracture networks for (a) the SW-NE and (b) the SE-NW well placements. 

The top row shows the results without capillary pressure consideration while 

the bottom row shows the results with capillary pressure consideration (Pc
2
). 
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6.2 HYDRAULIC FRACTURING DESIGN AND TREATMENT 

 After almost one decade of development and exploitation of unconventional and 

tight formations, there is no doubt that hydraulic fracturing is the most viable technology 

for hydrocarbon production from such reservoirs. However, it still remains a challenge 

how to operate and design such stimulation processes and subsequently how to 

characterize the created networks of fractures. Due to the heterogeneity of the reservoir 

rock, the existence of natural fracture system, and the variation of stress regime in near 

wellbore regions, the hydraulic fracturing may develop complex networks. On the other 

hand, there are other parameters in terms of operation that control the associated degree 

of complexity as well. The injected fluid viscosity, injection pressure, and spacing 

between fracture stages are such parameters. To maximize the well productivity and 

improve the reservoir performance, it is essential to carefully investigate the effect of 

these parameters. In fact, comprehensive models are required to enable reservoir and 

production engineers to tackle such problems. In this section, to illustrate another 

application of the UTCOMP-EDFM, we use this reservoir simulator to study the effect of 

fracture network complexity on the performance of reservoirs with various ranges of 

matrix permeabilities.  

Fracture network complexity is one of the key parameters that influence the well 

productivity and reservoir performance. When a low viscosity fluid is used, the fracture 

network growth is mostly complex with branches of fissures and cracks, while high 

viscosity fluid tends to form mostly planar factures. The main advantage of creating a 

complex network is increasing the stimulated region and also the surface area of the 

fracture system. In very low permeability reservoirs, this can substantially enhance the 

hydrocarbon production.  However, these types of fracture networks, depending on the 

properties of reservoir rock, may require a larger volume of fracture fluid and also a 
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careful design of the proppant distribution. When permeability of the reservoir rock is 

moderate to high, fluid leak-off increases significantly and affects the cost of stimulation 

job. Moreover, proppant distribution is another challenge that influences the ultimate 

conductivity of the fracture system. Thus, whether a complex network needs to be created 

or not must be an operational decision. In the following section, to study this concept, we 

compare the performance of a complex fracture network versus a simple fracture 

configuration by evaluating the gas production. To do so, three types of reservoirs are 

considered: a shale gas reservoir model with 50 nd permeability, a tight gas reservoir 

model with 50 μd permeability, and a conventional gas reservoir model with 5 md 

permeability. The 80×80×1 reservoir grid and the position of the fractures are shown in 

Figure 6.22. For the simple configuration, there are only 4 long planar fractures (shown 

in red) created at about 250 ft spacing (Figure 6.22a). These fractures are called primary 

fractures and are created in practice using high viscosity fluids made with cross-linked 

gels. For the complex network, 27 fracture planes are used in which the short fracture 

planes (shown in blue) are distributed around the primary fractures. The aperture of all 

the fractures is 0.0362 and 0.01 ft in simple and complex networks, respectively, to make 

the pore volume of the fracture systems equal in both cases. The assumption is that the 

same volume of the injected fluid has been used in both cases to create the fractures, and 

the fluid leak-off is constant as well. However, in reality, if we keep the matrix 

permeability constant, the leak-off is higher in the complex network because of the higher 

fracture surface area. The fractures permeability is proportional to the aperture squared. 

Thus, for the simple configuration, the fractures permeability is 120000 md, while for the 

complex network, the fractures permeability is 10000 md. The other rock and fluid 

properties are identical in both cases and are summarized in Table 5.5. In these case 

studies, we consider only the effect of fracture network complexity on gas production and 
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we neglect the gas desorption and the non-Darcy effects. For more detail characterization 

of fracture networks, one can refer to Cipolla et al (2010) and Mayerhofer et al (2006).  

 

 

                                                           (a) 

 

  

                                                                         (b) 

Figure 6.22: Reservoir models for (a) the simple and (b) complex hydraulic fracture 

networks. The well, the primary fractures, and the small branched fractures 

are shown in orange, red, and blue, respectively.  
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If we look at the simulation results for the simple and complex fracture networks 

in the reservoir with 50 nd permeability (Figure 6.23), we can observe that there is a huge 

difference in cumulative gas productions between the two cases. The production for the 

complex network is almost four times greater than the production for the simple planar 

fractures after 1750 days. This fact is clear in the drawdown curve as well (Figure 6.24). 

Also, if we compare the pressure map for both cases after 3000 days as shown in Figure 

6.25, it is evident that pressure depletion is higher in the case of complex network and a 

greater portion of the reservoir is affected by the fracture system. However, for the tight 

reservoir with matrix permeability of 50 μd, almost no difference is observed in the 

simulation results. The cumulative gas production and pressure drawdown curves almost 

overlap as shown in Figure 6.26 and 6.27. Also, if we compare the pressure profiles after 

400 days, again we can observe that both networks have depleted similar regions and 

pressure depletion has then propagated almost symmetrically in the reservoir (Figure 

6.28). For the 5 md matrix permeability case, the cumulative gas production and average 

reservoir pressure are shown in Figures 6.29 and 6.30. For the conventional type of gas 

reservoirs, it is shown that primary fractures with higher permeabilities result in better 

gas productions. The pressure profile is also presented for both cases at 20 days in Figure 

6.31. Since the same size of reservoir has been used in all the examples, the pressure 

depletion occurs too fast in the case of 5 md matrix permeability. Hence, the pressure 

profiles are shown at 20 days. Note that the color bars are different for the pressure 

profiles shown in each section. 

According to the results presented above, for nano-Darcy reservoirs, such as shale 

gas formations, a complex hydraulic fracture network is preferred. In fact, a complex 

network increases the stimulated region and a greater part of the reservoir is brought in 

contact with the fracture system. In such reservoirs, creating complex hydraulic fracture 
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networks enhances the conductivity of near wellbore regions and therefore improves gas 

production significantly. To achieve these large networks, a low viscosity fluid is 

injected. On the other hand, when the permeability of the reservoir is moderate, such as in 

conventional reservoirs (in the order of milli-Darcy), a dense fracture network is not an 

optimum design anymore. Since the rock matrix has enough flow capacity, the fluid 

delivery to the fracture system happens much faster. Thus, instead of a complex network, 

simple planar fractures with higher permeabilities can exploit the reservoir more 

efficiently. Also, since the permeability of these formations is high, fluid loss must be 

minimized as well using high viscosity fluids with gel or polymer additives. Finally, for 

tight reservoirs with permeability of micro-Darcy, although the difference between the 

results was not as significant as the other two cases, still a complex fracture network is 

preferred in the industry because of low permeability of the formation rock. 

 

 

 

Figure 6.23: Cumulative gas production for the simple and complex fracture networks. In 

this case, the rock matrix permeability is 50 nd. 
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Figure 6.24: Average reservoir pressure versus time for the simple and complex fracture 

networks. In this case, the rock matrix permeability is 50 nd. 

 

 
(a) (b)     

Figure 6.25: Pressure profiles for (a) the simple and (b) complex fracture networks after 

3000 days. In this case, the rock matrix permeability is 50 nd.  
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Figure 6.26: Cumulative gas production for the simple and complex fracture networks. In 

this case, the rock matrix permeability is 50 μd. 

 

 

Figure 6.27: Average reservoir pressure versus time for the simple and complex fracture 

networks. In this case, the rock matrix permeability is 50 μd. 
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                                 (a)                                                                        (b) 

Figure 6.28: Pressure profiles for (a) the simple and (b) complex fracture networks after 

400 days. In this case, the rock matrix permeability is 50 μd.  

 

 

Figure 6.29: Cumulative gas production for the simple and complex fracture networks. In 

this case, the rock matrix permeability is 5 md. 
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Figure 6.30: Average reservoir pressure versus time for the simple and complex fracture 

networks. In this case, the rock matrix permeability is 5 md. 

 

 

 

                                 (a)                                                                        (b) 

Figure 6.31: Pressure profiles for (a) the simple and (b) complex fracture networks after 

400 days. In this case, the rock matrix permeability is 5 md.  
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6.3 INJECTION CONFORMANCE CONTROL 

Although creation of hydraulic fractures is an inevitable step for successful 

development of unconventional reservoirs, the existence of fractures and conduits is an 

unfavorable situation when water flooding is designed for a conventional reservoir. High 

conductivity fractures and conduits appear to localize the stream of displacing fluid and 

therefore leave a major part of reservoir intact by waterflood. As a remedy for this 

problem, a new technology called conformance control has developed. Conformance 

control consists of injection of carefully designed fluids such as polymer and polymer 

gels solutions to increase the sweep efficiency of water flooding via diverting the 

displacing fluid, water, to un-swept regions of the reservoir. This includes either blocking 

the high-perm zones and fractures, or decreasing the mobility ratio of the displacement 

process. To prepare the gel solutions, in addition to polymers, crosslinkers are required to 

further attach the polymer molecules together and form a high viscosity mixture. Gels 

have a much higher permeability reduction effect on high-perm zones compared to 

polymer solutions due to structure of their molecules. Also gels penetrate deeper into 

reservoir which allows access to farther regions for a more efficient treatment. To design 

an injection conformance control process, a detailed study of the behavior of gels solution 

under different conditions is required. It is essential to understand the impact of salinity, 

temperature, and water and oil compositions on the performance of the injected fluid. The 

gelation time, gel viscosity as a function of shear stress, gel strength, and gel adsorption 

are all the parameters needed to be accurately quantified before their direct application to 

a real field. In addition to laboratory core floods and experiments, reservoir simulations 

must be carried out to better understand the performance of gel solutions under different 

scenarios. UTGEL reservoir simulator, as mentioned in Chapter 3, has developed to 

model a variety of chemical flooding processes including conformance control using 
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several types of gel. There are different gelation types available in UTGEL such as 

Preformed Particle Gel (PPG), Colloidal Dispersion Gel (CDG), silicate gel, 

polymer/chromium chloride gel, and polymer/chromium malonate gel. In order to 

maximize the sweep efficiency of the water flood, in addition to studying gel quality, a 

detailed characterization of reservoir properties is vital. As presented in earlier sections of 

this chapter, the geometry and the configuration of fractures and channels have a 

substantial effect on the performance of the reservoir and the corresponding IOR 

processes. Thus, in designing a conformance control, characteristics of complex fractures 

and channels must be well understood as well in order to maximize the sweep efficiency 

of the waterflood by detecting un-swept zones. To achieve this goal, the EDFM approach 

has been added to UTGEL reservoir simulator as part of this research. UTGEL-EDFM 

simulator is capable of modeling a variety of chemical EOR methods including the 

conformance control in fractured reservoirs. In this chapter, to represent several 

applications of this reservoir simulator, a few case studies are presented. To do so, 

Preformed Particle Gel (PPG) is used as the gelation model. In the subsequent section, a 

brief discussion of permeability reduction factor and viscosity calculation for this type of 

gel is presented. 

 

 6.3.1 Preformed Particle Gel (PPG) 

Preformed particle gel (PPG) is a high temperature high salinity resistance gel 

formed on the surface using crosslinkers prior to injection (Bai et al. (2007) and (2008), 

and Taksaudom (2014)). This type of gel has higher strength and temperature tolerance 

compared to other types of polymers and microgels. PPG is specially applied to the 

reservoirs with high conductivity fractures and channels because of its large swelling 
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ratio. When this type of gel is injected into a reservoir, the permeability of high-perm 

zones is reduced significantly. This permeability reduction diverts the displacing fluid to 

intact portions of reservoir, such as low-perm layers. When modeling PPG in UTGEL, 

two parameters are evaluated for measuring their influence on fluid flow: permeability 

reduction factor and viscosity change.  

 

6.3.1.1 Permeability Reduction Factor 

Permeability reduction occurs when gel particles enter a high-perm zone after 

swelling has occurred. The swelling ratio is defined based on Eq. (6.2), where SF  is 

swelling factor, pa  and pn  are matching parameters, and 
SEPC  is effective salinity. This 

factor is used during simulation to calculate the size of gel particles. 

 

  .
np

SF a Cp SEP
                                                                                                        (6.2) 

 

If gel particles size is less than certain factors of pore diameter, gel can pass through the 

pore throat. To calculate the pore throat radius  hr , Eq. (6.3) is used, where   is porosity 

and k  is the average permeability given by Eq. (6.4). In the latter, u  is velocity and k  is 

absolute permeability given in different directions. 
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The permeability of the invaded cell is then modified by the factor given in Eq. (6.5), 

where 
kfpR  is the permeability reduction factor, 

kpa  and 
kpn  are matching parameters, 

and q  is the flow rate. 

 

.kpn

kfp kp
R a q                                                                                                               (6.5) 

  

6.3.1.2 Viscosity 

The effective PPG viscosity (
M ) at zero shear-rate is calculated by the Huggins 

equation (Shi et al. 2011) as a function of gel concentration in aqueous phase (
PPGC ) and 

solvent viscosity (
s ). The other parameters in Eq. (6.6), ,1PPGA  and ,2PPGA , are 

matching parameters for the model.  

 

2
,1 ,2 .1sM PPG PPG PPG PPGA C A C   

 
                                                                   (6.6) 

 

To include the effect of shear-rate on gel viscosity, Meter’s equation is applied (Meter 

and Bird (1964)) where 0

M
  is the microgel solution viscosity at zero shear-rate, P  and 

1/2
  are model parameters, and eq  is the equivalent shear rate given by Eq. (6.8). In the 

latter, c  is the shear-rate correction, l  is the magnitude of flux for phase l , 
rl

k  is the 

relative permeability of phase l , and 
lS  is the saturation. 
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 For more details about PPG characteristics and modeling, one is referred to 

Taksaudom (2014). Also, for other types of gels, several models are available in UTGEL 

(Technical UTGEL V.01 (2013)) whose description is out of scope of this work. For the 

following case studies, PPG model is only employed.  

 

6.3.2 PPG Injection Timing 

When a conformance control is planned for a waterflood in a reservoir, it is 

crucial to determine the most optimum gel injection time. The goal is to block the high 

perm zones and divert water to un-swept regions before the water front reaches the 

producer wells. To do so, an accurate characterization of water invasion pattern is 

essential. The understanding of reservoir heterogeneity, and specifically the embedded 

high perm channels and fractures, can improve our ability to predict the water invasion 

profiles and thus to design an efficient conformance control job. 

The objective of this section is to show the significance of PPG injection timing 

through the following case study. The example consists of a quarter of five-spot pattern 

with one injector and one producer located at the opposite corners. The reservoir and 

fluid properties are summarized in Table 6.3. A highly conductive channel, made of 4 

vertical fractures, is inserted into the reservoir as shown in Figure 6.32. The permeability 

of fractures is 90000 md. This channel is intended to decrease the oil recovery through 

aggravating the water sweep efficiency. Four different schedules are studied for this 

problem. First, the entire waterflood is performed without conformance control. Then, in 

the next three scenarios, a 0.2 pore volume of PPG is injected along the water, but at 

different time windows. The injection schedules are summarized in Figure 6.33. From 

schedule-2 to schedule-4, the PPG injection is performed later after starting the 
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waterflood.  PPG is injected at 1000 ppm concentration; for permeability reduction 

calculations based on Eq. (6.5), 
kpa  and 

kpn  are set to 30 and -3, respectively.  

Figure 6.34 shows the incremental oil recovery for all of the scenarios after a total 

injection of 0.9 PV. As illustrated in this graph, when gel treatment is applied (schedules-

2 to -4) higher oil recovery is achieved. However, although the same amount of PPG is 

injected into the reservoir in each conformance control treatment, different recovery 

improvements are achieved. For early PPG injection, recovery improvement is 12 percent 

while this number for late injection reduces to 8 percent. In fact, injection of PPG earlier 

in the process limits the water front movement in the high perm channel and improves the 

oil sweep efficiency. As shown in Figures 6.35 and 6.36, the schedule-2 results in higher 

oil production rate and lower water-cut. For this schedule, water breakthrough is delayed 

about 1100 days (0.14 PV) compared to schedule-1. In late treatment, although the water 

breakthrough time remains unchanged compared to schedule-1, a decrease is observed in 

water-cut after 5000 days (0.55 PV). Also, Figure 6.37 compares the water saturation 

profiles after 100 and 200 days. It is evident that the water front movement is constrained 

in the case of early PPG injection (Figure 6.37a). This is attributed to the diversion of 

water flow from the high-perm channel to the surrounding matrix gridblocks because of 

gel blockage in the fractures. Thus, water has reached the producer later and water-cut 

has remained the lowest among all the four cases. On the other hand, for the intermediate 

and late treatments, since the fractures have already been washed before PPG injection, 

the invasion profile is not affected by gel injection. However, because of high viscosity of 

the gel solution, the displacement efficiency is higher inside the swept zone which results 

in an increase in oil production when the oil bank reaches the producer (Figure 6.37b).    

 

 



 133 

Overall Properties Relative Permeability Curves for Matrix 

Matrix Porosity (fraction) 0.2 Irreducible Water Saturation 0.2 

Matrix Permeability (md) 50 Water Rel. Perm. End Point 0.8 

Channel Permeability (md) 90000 Water Rel. Perm. Exponent 4 

Channel Aperture (ft) 0.1 Residual Oil Saturation 0.2 

Initial Reservoir Pressure (psi) 3000 Oil Rel. Perm. End Point 0.7 

Initial Water Saturation 0.2 Oil Rel. Perm. Exponent 2 

Initial Oil Saturation 0.8 C10H22 Properties 

Reservoir Temperature (°F) 60 Critical Pressure (psia) 350 

Rock Compressibility (psi
-1

) 0 Critical Temperature (°R) 1500 

Fluid Compressibility (psi
-1

) 0 Molecular Weight (lb/lb-mole) 142.23 

Well Properties Parachor 431 

Well Radius (ft) 0.25 Acentric Factor 0.488 

Producer BHP (psi) 3000 Water Viscosity (cp) 1 

Injector Rate (STB/D) 890 Oil Viscosity (cp) 5 

 

Table 6.3: Rock and fluid properties of the reservoir model in section 6.3.2. The 

relative permeability curves are straight lines for the fractures. 

 

Figure 6.32: A reservoir model with a high conductivity channel made with 4 intersecting 

fracture planes.   
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Figure 6.33: Injection schedules for the waterflood conformance control case study 

presented in section 6.3.2. 

 

 

Figure 6.34: Oil recovery for PPG injection timing case study. The results are shown for 

early, intermediate, and late injections of PPG as well as no PPG treatment 

result. 
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Figure 6.35: Oil production rates for PPG injection timing case study. The results are 

shown for early, intermediate, and late injections of PPG as well as no PPG 

treatment result. 

 

 

Figure 6.36: Water production rates for PPG injection timing case study. The results are 

shown for early, intermediate, and late injections of PPG as well as no PPG 

treatment result. 
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Figure 6.37: Water saturation profiles after (a) 0.25, and (b) 0.45 PV injection. In part 

(a), the PPG has only been injected in the “Early” scenario, while in part (b), 

the “Intermediate” injection has been performed as well.  



 137 

6.3.3 PPG Concentration 

For waterflood in heterogeneous reservoirs with noticeable contrast between rock 

matrix and channels permeabilities, higher viscosity and permeability reduction factor are 

required for gel solution. This can be achieved by adjusting PPG concentration (Eqs. 

(6.5) and (6.6)). The higher the gel concentration, the more conformance control is 

obtained. However, in terms of economics, an analysis must be made to understand 

whether higher gel concentrations could result in viable incremental oil recoveries. To do 

so, a comprehensive modeling tool is required to capture heterogeneous characteristics of 

the reservoir, such as fractures and channels, and to study their impact on the efficiency 

of conformance control. In the last section of this chapter, a case study is presented using 

UTGEL-EDFM to determine the effect of gel concentration on the vertical sweep 

efficiency of a waterflood process. The model reservoir as shown in Figure 6.38 is a 

three-dimensional problem comprising of 3 layers with different number of channels. The 

grid is 30×30×3 and the gridblock dimensions are 50, 50, and 150 ft in X-, Y-, and Z-

directions, respectively. The arbitrary inclined channels, all with 50000 md permeability, 

are distributed into these layers such that the degree of complexity and heterogeneity 

increases from top to bottom. The red channel intersects all the formation as well as the 

injector well, while the blue and green fractures penetrate only one and two layers, 

respectively. Thus, the top, middle, and bottom layers have 1, 4, and 8 channels. The well 

pattern is an inverted five-spot where 5343 barrels of water are injected per day to reach 1 

PV, and the BHP for the producers is 3000 psi. The injection schedule is 0.05, 0.25, and 

0.3 PV of pre-treatment waterflood, gel injection, and post-treatment waterflood, 

respectively. The other properties are the same as ones given in Table 6.3, except for the 

matrix permeability which is 30 md.  
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Figure 6.38: A reservoir model with 8 channels for the case study in section 6.3.3. The 

red channel intersects all the formation as well as the injector well while the 

blue and green fractures penetrate only one and two layers, respectively. 

 

 Three scenarios are studied to investigate the effect of PPG concentration on the 

performance of waterflood. First, the waterflood is performed without conformance 

control. Then, in the next two cases, 0.25 PV of gel solution is injected with different 

concentrations, 1000 and 4000 ppm. The gel concentration not only affects the viscosity 

calculations but also alters the permeability reduction factors. To calculate the reduction 

factors, kpa  and kpn  are set to 20 and -3, respectively. Figure 6.39 compares the 

incremental oil recoveries obtained from the waterflood and PPG treatments. It is 

observed that 11 and 15 percent increments in oil recovery are achieved due to injection 

of 1000 and 4000 ppm gel solutions, respectively. Moreover, gel solution not only 

reduces the total water production at producers as shown in Figure 6.40, but also 
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enhances the oil production (Figure 6.41) and the sweep efficiency by diverting the 

displacing fluid to un-swept regions. This fact is illustrated in water invasion profiles 

shown in Figure 6.42 as well. The profiles are shown after 1320 days (after almost 0.2 

PV injection). It is clear that water channelings after PPG treatments are limited 

significantly due to blockages, and the sweep efficiency increases accordingly. These 

tasks are more efficiently carried out by the injection of 4000 ppm gel compared to the 

1000 ppm concentration. In this study, the higher gel concentration results in extra 4 

percent in oil recovery, which can be compared to the extra cost for solution preparation. 

On the other hand, if water production is examined for the producers, as shown in Figure 

6.40, it is evident that higher gel concentration can reduce the produced water treatment 

cost by decreasing the water production. Thus, a detailed economic analysis must be 

made to assess the profitability of injecting an extra PPG along the solution.  
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Figure 6.39: Oil recovery for the case study of section 6.3.3. The results are shown for 

1000 and 4000 ppm as well as the waterflood with “No PPG”. 

 

 

Figure 6.40: Water production rates for the case study of section 6.3.3. The results are 

shown for 1000 and 4000 ppm as well as the waterflood with “No PPG”. 
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Figure 6.41: Oil production rates for the case study of section 6.3.3. The results are 

shown for 1000 and 4000 ppm as well as the waterflood with “No PPG”. 
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                   (a)                                               (b)                                            (c) 

Figure 6.42: Water saturation profiles after 0.2 PV total injection for (a) waterflood with 

“No PPG”, (b) waterflood with injection of 1000 ppm gel, and (c) 

waterflood with injection of 4000 ppm gel. In each column, saturation 

profiles are shown for the 3 layers, starting from the top layer at the top to 

the bottom layer at the bottom. 
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Chapter 7: Summary, Conclusions, and Recommendations 

 

In this section, a summary of the chapters, as well as the conclusions for this 

work, is presented. Subsequently, the recommendations for future research are given.  

 

7.1 SUMMARY AND CONCLUSIONS 

1. The Embedded Discrete Fracture Model (EDFM) was first developed by Li and 

Lee (2008), and later was extended by Moinfar (2013) to model slanted fractures 

with arbitrary orientations. EDFM combines the benefits of the dual continuum 

and discrete fracture models. In this approach, each fracture plane is embedded 

inside the matrix grid and intersects a number of the gridblocks. As a result, the 

fracture plane is discretized into several unstructured cells similar to DFMs. 

However, the matrix domain remains structured and is composed of cubical cells. 

Thus, to capture the geometry of fractures, grid refinement in the vicinity of 

fractures is not required. Hence, accurate results can be obtained with much larger 

gridblocks compared to fine-grid simulations. The communications between 

matrix and fracture cells and also between fracture to fracture cells are then 

defined based on the definition of transmissibility factors developed by Li and 

Lee (2008) and Moinfar (2013).  

2. The EDFM approach was implemented into The University of Texas in-house 

reservoir simulators UTCOMP and UTGEL, providing efficient and robust tools 

to study flow in complex fracture geometries and associated networks. Since 

UTCOMP and UTGEL reservoir simulators have been already geared with 

numerous models for studying primary, secondary, and enhanced oil recovery 
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methods, the EDFM implementation creates a more realistic environment to 

investigate the behavior of fractured reservoirs and the performance of hydraulic 

fracturing job. To calculate transmissibility factors, a stand-alone preprocessing 

code was developed by Cavalcante Filho et al. (2015). The preprocessing code 

generates a list of non-neighboring connections and the corresponding properties 

to be used as extra input for the reservoir simulators. 

3. UTCOMP-EDFM is capable of modeling a variety of Improved Oil Recovery 

methods (IOR) in fractured reservoirs, such as water flooding, miscible and 

immiscible gas injections for multiphase three-dimensional problems. Moreover, 

the UTCOMP-EDFM provides the capability to model complicated fracture 

networks with significant applications in hydraulic fracturing studies.  

4. Furthermore, UTGEL-EDFM is capable of modeling conformance control in 

reservoirs with complex high permeability channels and conduits. Studying other 

processes, such as polymer flooding and tracer flooding in fractured reservoirs, is 

available in UTGEL-EDFM as well. 

5. To implement EDFM in UTCOMP and UTGEL reservoir simulators, a novel 

method was designed in which the non-neighboring connections (NNC) were 

treated as additional dimensions. Since in conventional reservoir simulators the 

number of connections for every gridblock is limited to six, to account for fluid 

transfers between matrix and fracture cells, NNC concept was applied. To 

implement this concept in UTCOMP and UTGEL, the governing formulations 

were modified such that the fluid transfer through NNCs was computed using new 

directions, rather than X-, Y-, and Z-directions.  

6. To verify the accuracy of UTCOMP-EDFM and UTGEL-EDFM, several 

numerical simulation examples and one semi-analytical solution were performed. 
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First, the EDFM results were compared to a fine-grid simulation results. To do so, 

a reservoir model containing 3 vertical fractures was generated. Good agreement 

between EDFM and fine-grid results was observed while the simulation run times 

decreased 110 to 120 times. Next, to verify more complex fracture geometries, 

UTCOMP-EDFM and UTGEL-EDFM were compared against the earlier 

implementation of EDFM in GPAS reservoir simulator by Moinfar (2013). Two 

reservoir models with arbitrary oriented dip-angled fractures were studied. Again 

excellent agreement was observed. Finally, the implementation of well-fracture 

intersection was verified against a semi-analytical solution developed by Zhou et 

al. (2014) and Wei et al. (2014). 

7.  To show the capabilities and applications of UTCOMP-EDFM and UTGEL-

EDFM, several case studies were presented. In the first part, the significance of 

the natural fracture networks on the performance of a reservoir model was 

investigated. The simulation outcomes indicated that considering the 

configuration of the background fracture networks can significantly improve the 

well placement design. Moreover, the role of capillary imbibition in oil 

production out of the water-wet reservoirs was evaluated for several fracture 

networks. It was observed that high capillary effects decrease the impact of 

fracture network on the reservoir performance. 

8. UTCOMP-EDFM was also applied to study the hydraulic fractures efficiency. In 

this part, the effect of fracture network complexity on cumulative gas production 

was investigated. A sensitivity analysis was performed on rock matrix 

permeability to evaluate the performance of the created network in different 

conditions. It was observed that in a very tight formation, a complex network is 

preferred to infinite conductivity planar fractures. However, in moderate to high 
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permeability reservoirs, the creation of high conductivity primary fractures 

satisfies the purpose of the stimulation job. 

9. The existence of highly conductive pathways such as channels, conduits, and 

fractures is not a favorable situation all the time. These features can deteriorate 

the efficiency of water flooding or cause problems for injector wells. Gel 

treatment is one of the remedies for this problem. UTGEL-EDFM was employed 

to investigate a few case studies in which PPG was injected to increase sweep 

efficiency. Several injection timings and several gel concentrations were specified 

for water flooding processes and their impact on oil recovery was evaluated 

henceforth. EDFM approach enabled consideration of more realistic channels and 

conduits compared to the conventional methods. 

 

7.2 RECOMMENDATIONS 

1. Implementation of the EDFM in the more general reservoir simulator, UTCHEM, 

enables investigation of a variety of chemical enhanced oil recovery methods in 

fractured reservoirs. Using the thermal feature of UTCHEM (Lashgari (2014)), 

one can study several production mechanisms in heavy oil fractured reservoirs. 

2. Over the progress of this research, new features have been added to UTCOMP. 

Thus, we suggest that these new capabilities, such as modeling low salinity water 

injection (Kazemi Nia Korrani (2014)), to be added to the current version of 

UTCOMP-EDFM. 

3. To further speedup simulation runs, implementation of the fully implicit 

formulation, especially for fracture cells, is suggested. The small control-volume 

of fracture cells often results in a significant increase in the simulation run time. 
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4. Transfer of pre-processing code to FORTRAN is a major recommendation. This 

eliminates the need for extra inputs and it further facilitates the simulation run 

process. 

5. Incorporating EDFM with higher-order methods, available in UTCOMP, can 

increase the accuracy of simulations. This allows selection of larger matrix 

gridblocks which in turn improves the simulation run time. 

6. Comparison of UTCOMP-EDFM and UTGEL-EDFM with real field data is 

suggested to verify their applicability in studying large-scale problems. 
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Appendix: Semi-Analytical Solution 

 

Based on Zhou et al. (2014), when a rectangular source is considered in a 

reservoir, the pressure drawdown for every point is calculated with Eq. (A-1), where 

( , , , )p x y z t  is pressure at point ( , , )x y z and time t , 
0( )U t t  is Heaviside’s unit step 

function,   is porosity, tc  is total compressibility, a  is reservoir length, b  is reservoir 

width, q  is the flux to the rectangular source,   is hydraulic diffusivity, 3  is elliptic 

theta function of the third kind, and 3

  is integral of elliptic theta function. The 

rectangular source coordinates are  0 01, ,0x y ,  0 02, ,0x y ,  0 01, ,x y d , and  0 02, ,x y d .  
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The elliptic theta function of the third kind and its integral are 
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When there are multiple fractures, non-aligned with major coordinates, the superposition concept is 

applied to calculate pressure drawdown as 
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where 
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