127 research outputs found

    Decision-Theoretic Foundations for Causal Reasoning

    Full text link
    We present a definition of cause and effect in terms of decision-theoretic primitives and thereby provide a principled foundation for causal reasoning. Our definition departs from the traditional view of causation in that causal assertions may vary with the set of decisions available. We argue that this approach provides added clarity to the notion of cause. Also in this paper, we examine the encoding of causal relationships in directed acyclic graphs. We describe a special class of influence diagrams, those in canonical form, and show its relationship to Pearl's representation of cause and effect. Finally, we show how canonical form facilitates counterfactual reasoning.Comment: See http://www.jair.org/ for any accompanying file

    Influence Diagrams With Memory States: Representation and Algorithms

    Get PDF
    Abstract. Influence diagrams (IDs) offer a powerful framework for decision making under uncertainty, but their applicability has been hindered by the exponential growth of runtime and memory usage—largely due to the no-forgetting assumption. We present a novel way to maintain a limited amount of memory to inform each decision and still obtain near-optimal policies. The approach is based on augmenting the graphical model with memory states that represent key aspects of previous observations—a method that has proved useful in POMDP solvers. We also derive an efficient EM-based message-passing algorithm to compute the policy. Experimental results show that this approach produces highquality approximate polices and offers better scalability than existing methods.

    A dynamic transmission model for predicting trends in Helicobacter pylori and associated diseases in the United States.

    Get PDF
    To assess the benefits of intervention programs against Helicobacter pylori infection, we estimated the baseline curves of its incidence and prevalence. We developed a mathematical (compartmental) model of the intrinsic dynamics of H. pylori, which represents the natural history of infection and disease progression. Our model divided the population according to age, infection status, and clinical state. Case-patients were followed from birth to death. A proportion of the population acquired H. pylori infection and became ill with gastritis, duodenal ulcer, chronic atrophic gastritis, or gastric cancer. We simulated the change in transmissibility consistent with the incidence of gastric cancer and duodenal ulcer over time, as well as current H. pylori prevalence. In the United States, transmissibility of H. pylori has decreased to values so low that, should this trend continue, the organism will disappear from the population without targeted intervention; this process, however, will take more than a century

    Ranking structured documents using utility theory in the Bayesian network retrieval model

    Get PDF
    In this paper a new method based on Utility and Decision theory is presented to deal with structured documents. The aim of the application of these methodologies is to refine a first ranking of structural units, generated by means of an Information Retrieval Model based on Bayesian Networks. Units are newly arranged in the new ranking by combining their posterior probabilities, obtained in the first stage, with the expected utility of retrieving them. The experimental work has been developed using the Shakespeare structured collection and the results show an improvement of the effectiveness of this new approach

    Graphical models for interactive POMDPs: representations and solutions

    Get PDF
    We develop new graphical representations for the problem of sequential decision making in partially observable multiagent environments, as formalized by interactive partially observable Markov decision processes (I-POMDPs). The graphical models called interactive inf uence diagrams (I-IDs) and their dynamic counterparts, interactive dynamic inf uence diagrams (I-DIDs), seek to explicitly model the structure that is often present in real-world problems by decomposing the situation into chance and decision variables, and the dependencies between the variables. I-DIDs generalize DIDs, which may be viewed as graphical representations of POMDPs, to multiagent settings in the same way that IPOMDPs generalize POMDPs. I-DIDs may be used to compute the policy of an agent given its belief as the agent acts and observes in a setting that is populated by other interacting agents. Using several examples, we show how I-IDs and I-DIDs may be applied and demonstrate their usefulness. We also show how the models may be solved using the standard algorithms that are applicable to DIDs. Solving I-DIDs exactly involves knowing the solutions of possible models of the other agents. The space of models grows exponentially with the number of time steps. We present a method of solving I-DIDs approximately by limiting the number of other agents’ candidate models at each time step to a constant. We do this by clustering models that are likely to be behaviorally equivalent and selecting a representative set from the clusters. We discuss the error bound of the approximation technique and demonstrate its empirical performance

    Approaching Proof in the Classroom Through the Logic of Inquiry

    Get PDF
    The paper analyses a basic gap, highlighted by most of the literature concerning the teaching of proofs, namely, the distance between students' argumentative and proving processes. The analysis is developed from both epistemological and cognitive standpoints: it critiques the Toulmin model of reasoning and introduces a new model, the Logic of Inquiry of Hintikka, more suitable for bridging this gap. An example of didactical activity within Dynamic Geometry Environments is sketched in order to present a concrete illustration of this approach and to show the pedagogical effectiveness of the model
    corecore